zoukankan      html  css  js  c++  java
  • [NOI2013]矩阵游戏(数列通项+费马小定理)

    题目链接

    Analysis

    先把单独一行拿出来看,设 (f_1) 是这一行的第一个元素,有 (f_i=f_{i-1}*a+b)。所以 (f_m=f_1a^{m-1}+frac{a^{i-1}-1}{a-1}b)。如果不会的可以再去补一下高中数学。

    然后设 (g_i) 是第 (i) 行的 (f_m),有 (g_i=(g_{i-1}c+d)a^{m-1}+frac{a^{i-1}-1}{a-1}b),然后换个元又变成上面的式子,搞一搞就出来了。

    但是 (n,m) 太大怎么搞?我们有一个费马小定理,(a^{p-1}=1pmod p,a<p)。然后就可以降到 (p) 以下了。

    坑点:注意 (a=1) 时等比数列求和公式不存在,需要特判,而次时又需要模 (p)(n,m),所以 (n,m) 两个都要模。

    namespace Solve{
    	const long long mod = 1e9 + 7;
    	const int MAXL = 1000010;
    	static char n[MAXL], m[MAXL];
    	static int lenn, lenm;
    	static long long a, b, c, d;
    	long long ksm(long long x, long long y) {
    		long long ret = 1;
    		while (y) {
    			if (y & 1) ret = (ret * x) % mod;
    			x = (x * x) % mod;
    			y >>= 1;
    		}
    		return ret;
    	}
    	void BruteForcePlus() {
    		long long MOD = mod - 1;
    		long long nn = 0, mm = 0;
    		long long nnn = 0, mmm = 0;
    		for (int i = 1; i <= lenn; i++) nn = (nn * 10 + n[i] - '0') % MOD, nnn = (nnn * 10 + n[i] - '0') % mod;
    		for (int i = 1; i <= lenm; i++) mm = (mm * 10 + m[i] - '0') % MOD, mmm = (mmm * 10 + m[i] - '0') % mod;
    		if (nn == 0) nn = MOD;
    		if (mm == 0) mm = MOD;
    		long long y = c * ksm(a, mm - 1) % mod;
    		long long x = ((ksm(a, mm - 1) - 1 + mod) * ksm(a - 1, mod - 2) % mod * b % mod + d * ksm(a, mm - 1) % mod) % mod;
    		long long ans = (ksm(a, mm - 1) + (ksm(a, mm - 1) - 1 + mod) * ksm(a - 1, mod - 2) % mod * b % mod) % mod;
    		if (a == 1) {
    			x = ((mmm - 1) * b % mod + d + mod) % mod;
    			ans = (1 + (mmm - 1) * b % mod + mod) % mod;
    		}
    		if (y == 1) ans = (ans + x * (nnn - 1) % mod + mod) % mod;
    		else ans = (ans * ksm(y, nn - 1) % mod + (ksm(y, nn - 1) - 1 + mod) * ksm(y - 1, mod - 2) % mod * x % mod) % mod;
    		print(ans);
    	}
    	void MAIN() {
    		scanf("%s%s", n + 1, m + 1);
    		scanf("%lld%lld%lld%lld", &a, &b, &c, &d);
    		lenn = strlen(n + 1);
    		lenm = strlen(m + 1);
    		BruteForcePlus();
    	}
    } using namespace Solve;
    
  • 相关阅读:
    微信菜单设置为小程序报错85005错误
    VS2013常用快捷键
    VS2017专业版和企业版激活密钥
    微信小程序image组件binderror使用例子(对应html、js中的onerror)
    本科无学位有哪些途径来获得硕士学位
    asp.net 微信JsSDK
    使用nginx反向代理,一个80端口下,配置多个微信项目
    对称与非对称加密;SSL;HTTPS;AJP
    java 在实例化异常的时候做的事情
    简单理解正向,反向,透明代理
  • 原文地址:https://www.cnblogs.com/zcr-blog/p/13715290.html
Copyright © 2011-2022 走看看