描述
Like everyone, cows enjoy variety. Their current fancy is new shapes for pastures. The old rectangular shapes are out of favor; new geometries are the favorite.
I. M. Hei, the lead cow pasture architect, is in charge of creating a triangular pasture surrounded by nice white fence rails. She is supplied with N (3 <= N <= 40) fence segments (each of integer length Li (1 <= Li <= 40) and must arrange them into a triangular pasture with the largest grazing area. Ms. Hei must use all the rails to create three sides of non-zero length.
Help Ms. Hei convince the rest of the herd that plenty of grazing land will be available. Calculate the largest area that may be enclosed with a supplied set of fence segments.
输入
* Line 1: A single integer N
* Lines 2..N+1: N lines, each with a single integer representing one fence segment's length. The lengths are not necessarily unique.
输出
A single line with the integer that is the truncated integer representation of the largest possible enclosed area multiplied by 100. Output -1 if no triangle of positive area may be constructed.
样例输入
5
1
1
3
3
4
样例输出
692
提示
which is 100x the area of an equilateral triangle with side length 4
题目大意:
给定几条边,用上全部的边组成三角形,输出最大的三角形面积,若不存在,输出-1.
大体思路:
枚举所有可能出现的边的情况,在判断是否能成为三角形,然后进行处理
#include <bits/stdc++.h> using namespace std; const int N=1605;///40*40 int dp[N][N]={0};///dp[i][j]代表能否构成i,j两边 int a[50]; int area(int a,int b,int c) { double p=(a+b+c)/2.0; return (int)100*sqrt(p*(p-a)*(p-b)*(p-c)); } int main() { int n,sum=0; cin>>n; for(int i=0;i<n;i++) cin>>a[i],sum+=a[i]; dp[0][0]=1; for(int i=0;i<n;i++) for(int j=sum;j>=0;j--) for(int k=j;k>=0;k--) if(j>=a[i]&&dp[j-a[i]][k]||k>=a[i]&&dp[j][k-a[i]]) dp[j][k]=1; int maxs=-1; for(int i=sum;i>0;i--) for(int j=i;j>0;j--) { if(dp[i][j]) { int k=sum-i-j; if(i<j+k||i+j>k)///判断三边是否组成三角形 maxs=max(maxs,area(i,j,k)); } } if(maxs==-1) cout<<"-1"<<' '; else cout<<maxs<<' '; return 0; }