zoukankan      html  css  js  c++  java
  • c++ caffe 输出 activation map 、 层参数

    python输出activation map与层参数:https://blog.csdn.net/tina_ttl/article/details/51033660

    caffe::Net文档:

    https://caffe.berkeleyvision.org/doxygen/classcaffe_1_1Net.html#a6f6cf9d40637f7576828d856bb1b1826

    caffe::Blob文档:

    http://caffe.berkeleyvision.org/doxygen/classcaffe_1_1Blob.html

    图像通道分离与合并cv::split() cv::merge()

    https://blog.csdn.net/guduruyu/article/details/70837779

    caffe官方提供的prediction代码

    caffe提供了一个用已经训练好的caffemodel来分类单张图片的库(./build/examples/cpp_classification/classification.bin),该库的源码为文件./examples/cpp-classification/classification.cpp

    #include <caffe/caffe.hpp>
    #ifdef USE_OPENCV
    #include <opencv2/core/core.hpp>
    #include <opencv2/highgui/highgui.hpp>
    #include <opencv2/imgproc/imgproc.hpp>
    #endif  // USE_OPENCV
    #include <algorithm>
    #include <iosfwd>
    #include <memory>
    #include <string>
    #include <utility>
    #include <vector>
     
    #ifdef USE_OPENCV
    using namespace caffe;  // NOLINT(build/namespaces)
    using std::string;
     
    /* Pair (label, confidence) representing a prediction. */
    typedef std::pair<string, float> Prediction;
     
    class Classifier {
     public:
      Classifier(const string& model_file,
                 const string& trained_file,
                 const string& mean_file,
                 const string& label_file);
     
      std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);
     
     private:
      void SetMean(const string& mean_file);
     
      std::vector<float> Predict(const cv::Mat& img);
     
      void WrapInputLayer(std::vector<cv::Mat>* input_channels);
     
      void Preprocess(const cv::Mat& img,
                      std::vector<cv::Mat>* input_channels);
     
     private:
      shared_ptr<Net<float> > net_;
      cv::Size input_geometry_;
      int num_channels_;
      cv::Mat mean_;
      std::vector<string> labels_;
    };
     
     
    /*分类对象构造文件*/
    Classifier::Classifier(const string& model_file,
                           const string& trained_file,
                           const string& mean_file,
                           const string& label_file) {
    #ifdef CPU_ONLY
      Caffe::set_mode(Caffe::CPU);
    #else
      Caffe::set_mode(Caffe::GPU);
    #endif
     
      /* Load the network. */
      net_.reset(new Net<float>(model_file, TEST)); /*复制网络结构*/
      net_->CopyTrainedLayersFrom(trained_file);   /*加载caffemodel,该函数在net.cpp中实现*/
     
      CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
      CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";
     
      Blob<float>* input_layer = net_->input_blobs()[0];
      num_channels_ = input_layer->channels();    /*该网络结构所要求的图片输入通道数*/
      CHECK(num_channels_ == 3 || num_channels_ == 1)
        << "Input layer should have 1 or 3 channels.";
      input_geometry_ = cv::Size(input_layer->width(), input_layer->height());  /*输入层需要的图片宽高*/
     
      /* Load the binaryproto mean file. */
      SetMean(mean_file);   /*加载均值文件*/
     
      /* Load labels. */
      std::ifstream labels(label_file.c_str());  /*加载标签名称文件*/
      CHECK(labels) << "Unable to open labels file " << label_file;
      string line;
      while (std::getline(labels, line))
        labels_.push_back(string(line));
     
      Blob<float>* output_layer = net_->output_blobs()[0];   /*检查标签个数与网络的输出结点个数是否一样*/
      CHECK_EQ(labels_.size(), output_layer->channels())
        << "Number of labels is different from the output layer dimension.";
    }
     
    static bool PairCompare(const std::pair<float, int>& lhs,
                            const std::pair<float, int>& rhs) {
      return lhs.first > rhs.first;
    }
     
    /* Return the indices of the top N values of vector v. */
    static std::vector<int> Argmax(const std::vector<float>& v, int N) {
      std::vector<std::pair<float, int> > pairs;
      for (size_t i = 0; i < v.size(); ++i)
        pairs.push_back(std::make_pair(v[i], i));
      std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);
     
      std::vector<int> result;
      for (int i = 0; i < N; ++i)
        result.push_back(pairs[i].second);
      return result;
    }
     
    /* Return the top N predictions. */
    std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
      std::vector<float> output = Predict(img);  /*调用这个函数做分类*/
     
      N = std::min<int>(labels_.size(), N);
      std::vector<int> maxN = Argmax(output, N);
      std::vector<Prediction> predictions;
      for (int i = 0; i < N; ++i) {
        int idx = maxN[i];
        predictions.push_back(std::make_pair(labels_[idx], output[idx]));
      }
     
      return predictions;
    }
     
    /* Load the mean file in binaryproto format. */
    void Classifier::SetMean(const string& mean_file) {
      BlobProto blob_proto;
      ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);  /*读入均值文件在Io.cpp中实现*/
     
      /* Convert from BlobProto to Blob<float> */
      Blob<float> mean_blob;
      mean_blob.FromProto(blob_proto);  /*将读入的均值文件转成Blob对象*//*Blob类在Blob.hpp中定义*/
      CHECK_EQ(mean_blob.channels(), num_channels_)
        << "Number of channels of mean file doesn't match input layer.";
     
      /* The format of the mean file is planar 32-bit float BGR or grayscale. */
      std::vector<cv::Mat> channels;
      float* data = mean_blob.mutable_cpu_data();
      for (int i = 0; i < num_channels_; ++i) {
        /* Extract an individual channel. */
        cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
        channels.push_back(channel);
        data += mean_blob.height() * mean_blob.width();
      }  /*将均值图像的每个通道图像拷贝到channel中*/
     
      /* Merge the separate channels into a single image. */
      cv::Mat mean;
      cv::merge(channels, mean);  /*合并每个通道图像*/
     
      /* Compute the global mean pixel value and create a mean image
       * filled with this value. */
      cv::Scalar channel_mean = cv::mean(mean);
      mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
    }
     
    /*测试函数*/
    std::vector<float> Classifier::Predict(const cv::Mat& img) {
      Blob<float>* input_layer = net_->input_blobs()[0];
      input_layer->Reshape(1, num_channels_,
                           input_geometry_.height, input_geometry_.width);/*没太看懂,应该是一些缩放*/
      /* Forward dimension change to all layers. */
      net_->Reshape();
     
      std::vector<cv::Mat> input_channels;
      WrapInputLayer(&input_channels);/*对输入层数据进行包装*/
     
      Preprocess(img, &input_channels);  /*把传入的测试图像写入到输入层*/
     
      net_->Forward();    /*网络前向传播:计算出该测试图像属于哪个每个类别的概率也就是最终的输出层*/
     
      /* Copy the output layer to a std::vector */
      Blob<float>* output_layer = net_->output_blobs()[0];   /*将输出层拷贝到向量*/
      const float* begin = output_layer->cpu_data();
      const float* end = begin + output_layer->channels();
      return std::vector<float>(begin, end);
    }
     
    /* Wrap the input layer of the network in separate cv::Mat objects
     * (one per channel). This way we save one memcpy operation and we
     * don't need to rely on cudaMemcpy2D. The last preprocessing
     * operation will write the separate channels directly to the input
     * layer. */
    void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
      Blob<float>* input_layer = net_->input_blobs()[0];
     
      int width = input_layer->width();
      int height = input_layer->height();
      float* input_data = input_layer->mutable_cpu_data();
      for (int i = 0; i < input_layer->channels(); ++i) {
        cv::Mat channel(height, width, CV_32FC1, input_data);
        input_channels->push_back(channel);
        input_data += width * height;
      }
    }
     
    void Classifier::Preprocess(const cv::Mat& img,
                                std::vector<cv::Mat>* input_channels) {
      /* Convert the input image to the input image format of the network. */
      cv::Mat sample;
      if (img.channels() == 3 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
      else if (img.channels() == 4 && num_channels_ == 1)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
      else if (img.channels() == 4 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
      else if (img.channels() == 1 && num_channels_ == 3)
        cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
      else
        sample = img;/*将输入的图像转换成输入层需要的图像格式*/
     
      cv::Mat sample_resized;
      if (sample.size() != input_geometry_)
        cv::resize(sample, sample_resized, input_geometry_);    /*如果大小不一致则需要缩放*/
      else
        sample_resized = sample;
     
      cv::Mat sample_float;
      if (num_channels_ == 3)
        sample_resized.convertTo(sample_float, CV_32FC3);       /*将数据转化成浮点型*/
      else
        sample_resized.convertTo(sample_float, CV_32FC1);
     
      cv::Mat sample_normalized;
      cv::subtract(sample_float, mean_, sample_normalized);     /*应该是当前图像减去均值图像*/
     
      /* This operation will write the separate BGR planes directly to the
       * input layer of the network because it is wrapped by the cv::Mat
       * objects in input_channels. */
      cv::split(sample_normalized, *input_channels);   /*把测试的图像通过之前的定义的wraper写入到输入层*/
     
      CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
            == net_->input_blobs()[0]->cpu_data())
        << "Input channels are not wrapping the input layer of the network.";
    }
     
    int main(int argc, char** argv) {
      if (argc != 6) {
        std::cerr << "Usage: " << argv[0]
                  << " deploy.prototxt network.caffemodel"
                  << " mean.binaryproto labels.txt img.jpg" << std::endl;
        return 1;
      }
     
      ::google::InitGoogleLogging(argv[0]);
     
      string model_file   = argv[1];   /*标识网络结构的deploy.prototxt文件*/
      string trained_file = argv[2];   /*训练出来的模型文件caffemodel*/
      string mean_file    = argv[3];   /*均值.binaryproto文件*/
      string label_file   = argv[4];   /*标签文件:标识类别的名称*/
      Classifier classifier(model_file, trained_file, mean_file, label_file);  /*创建对象并初始化网络、模型、均值、标签各类对象*/
     
      string file = argv[5];   /*传入的待测试图片*/
     
      std::cout << "---------- Prediction for "
                << file << " ----------" << std::endl;
     
      cv::Mat img = cv::imread(file, -1);
      CHECK(!img.empty()) << "Unable to decode image " << file;
      std::vector<Prediction> predictions = classifier.Classify(img);   /*具体测试传入的图片并返回测试的结果:类别ID与概率值的Prediction类型数组*/
     
      /* Print the top N predictions. *//*将测试的结果打印*/
      for (size_t i = 0; i < predictions.size(); ++i) {
        Prediction p = predictions[i];
        std::cout << std::fixed << std::setprecision(4) << p.second << " - ""
                  << p.first << """ << std::endl;
      }
    }
    #else
    int main(int argc, char** argv) {
      LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
    }
    #endif  // USE_OPENCV

    输出activation map代码

    输出层参数代码

  • 相关阅读:
    【UNR #1】火车管理
    NOIP2018保卫王国
    [SCOI2015]国旗计划[Wf2014]Surveillance
    [TJOI2015]线性代数(最小割)
    [AH2017/HNOI2017]礼物(FFT)
    BZOJ5093图的价值(斯特林数)
    [NOI2018]你的名字(后缀自动机+线段树)
    [SDOI2015]序列统计(多项式快速幂)
    [NOI2014]购票(斜率优化+线段树)
    [CQOI2017]小Q的表格(数论+分块)
  • 原文地址:https://www.cnblogs.com/zealousness/p/9638056.html
Copyright © 2011-2022 走看看