zoukankan      html  css  js  c++  java
  • 手写数字识别———Softmax回归

    参考教程:http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html

    安装要求:

    Spyder(Python3.5)

    Anaconda

    下载MNIST数据集

    在网上下载数据集,放在"MNIST_data"文件下

    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    print("Download Done!") 

    回归模型

    权重衰减

    我们通过添加一个权重衰减项 	extstyle frac{lambda}{2} sum_{i=1}^k sum_{j=0}^{n} 	heta_{ij}^2 来修改代价函数,这个衰减项会惩罚过大的参数值,现在我们的代价函数变为:

    
egin{align}
J(	heta) = - frac{1}{m} left[ sum_{i=1}^{m} sum_{j=1}^{k} 1left{y^{(i)} = j
ight} log frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)} }}  
ight]
              + frac{lambda}{2} sum_{i=1}^k sum_{j=0}^n 	heta_{ij}^2
end{align}


    有了这个权重衰减项以后 (	extstyle lambda > 0),代价函数就变成了严格的凸函数,这样就可以保证得到唯一的解了。 此时的 Hessian矩阵变为可逆矩阵,并且因为	extstyle J(	heta)是凸函数,梯度下降法和 L-BFGS 等算法可以保证收敛到全局最优解。


    为了使用优化算法,我们需要求得这个新函数 	extstyle J(	heta) 的导数,如下:

    
egin{align}

abla_{	heta_j} J(	heta) = - frac{1}{m} sum_{i=1}^{m}{ left[ x^{(i)} ( 1{ y^{(i)} = j}  - p(y^{(i)} = j | x^{(i)}; 	heta) ) 
ight]  } + lambda 	heta_j
end{align}


    通过最小化 	extstyle J(	heta),我们就能实现一个可用的 softmax 回归模型。

     

    Softmax回归与Logistic 回归的关系

    当类别数 	extstyle k = 2 时,softmax 回归退化为 logistic 回归。这表明 softmax 回归是 logistic 回归的一般形式。具体地说,当 	extstyle k = 2 时,softmax 回归的假设函数为:

    
egin{align}
h_	heta(x) &=

frac{1}{ e^{	heta_1^Tx}  + e^{ 	heta_2^T x^{(i)} } }
egin{bmatrix}
e^{ 	heta_1^T x } \
e^{ 	heta_2^T x }
end{bmatrix}
end{align}


    利用softmax回归参数冗余的特点,我们令 	extstyle psi = 	heta_1,并且从两个参数向量中都减去向量 	extstyle 	heta_1,得到:

    
egin{align}
h(x) &=

frac{1}{ e^{vec{0}^Tx}  + e^{ (	heta_2-	heta_1)^T x^{(i)} } }
egin{bmatrix}
e^{ vec{0}^T x } \
e^{ (	heta_2-	heta_1)^T x }
end{bmatrix} \


&=
egin{bmatrix}
frac{1}{ 1 + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
frac{e^{ (	heta_2-	heta_1)^T x }}{ 1 + e^{ (	heta_2-	heta_1)^T x^{(i)} } }
end{bmatrix} \

&=
egin{bmatrix}
frac{1}{ 1  + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
1 - frac{1}{ 1  + e^{ (	heta_2-	heta_1)^T x^{(i)} } } \
end{bmatrix}
end{align}


    因此,用 	extstyle 	heta'来表示	extstyle 	heta_2-	heta_1,我们就会发现 softmax 回归器预测其中一个类别的概率为 	extstyle frac{1}{ 1  + e^{ (	heta')^T x^{(i)} } },另一个类别概率的为 	extstyle 1 - frac{1}{ 1 + e^{ (	heta')^T x^{(i)} } },这与 logistic回归是一致的。

    Softmax 回归有一个不寻常的特点:它有一个“冗余”的参数集。为了便于阐述这一特点,假设我们从参数向量 	extstyle 	heta_j 中减去了向量 	extstyle psi,这时,每一个 	extstyle 	heta_j 都变成了 	extstyle 	heta_j - psi(	extstyle j=1, ldots, k)。此时假设函数变成了以下的式子:

    
egin{align}
p(y^{(i)} = j | x^{(i)} ; 	heta)
&= frac{e^{(	heta_j-psi)^T x^{(i)}}}{sum_{l=1}^k e^{ (	heta_l-psi)^T x^{(i)}}}  \
&= frac{e^{	heta_j^T x^{(i)}} e^{-psi^Tx^{(i)}}}{sum_{l=1}^k e^{	heta_l^T x^{(i)}} e^{-psi^Tx^{(i)}}} \
&= frac{e^{	heta_j^T x^{(i)}}}{sum_{l=1}^k e^{ 	heta_l^T x^{(i)}}}.
end{align}


    换句话说,从 	extstyle 	heta_j 中减去 	extstyle psi 完全不影响假设函数的预测结果!这表明前面的 softmax 回归模型中存在冗余的参数。更正式一点来说, Softmax 模型被过度参数化了。对于任意一个用于拟合数据的假设函数,可以求出多组参数值,这些参数得到的是完全相同的假设函数 	extstyle h_	heta


    进一步而言,如果参数 	extstyle (	heta_1, 	heta_2,ldots, 	heta_k) 是代价函数 	extstyle J(	heta) 的极小值点,那么 	extstyle (	heta_1 - psi, 	heta_2 - psi,ldots,
	heta_k - psi) 同样也是它的极小值点,其中 	extstyle psi 可以为任意向量。因此使 	extstyle J(	heta) 最小化的解不是唯一的。(有趣的是,由于 	extstyle J(	heta) 仍然是一个凸函数,因此梯度下降时不会遇到局部最优解的问题。但是 Hessian 矩阵是奇异的/不可逆的,这会直接导致采用牛顿法优化就遇到数值计算的问题)


    注意,当 	extstyle psi = 	heta_1 时,我们总是可以将 	extstyle 	heta_1替换为	extstyle 	heta_1 - psi = vec{0}(即替换为全零向量),并且这种变换不会影响假设函数。因此我们可以去掉参数向量 	extstyle 	heta_1 (或者其他 	extstyle 	heta_j 中的任意一个)而不影响假设函数的表达能力。实际上,与其优化全部的 	extstyle k	imes(n+1) 个参数 	extstyle (	heta_1, 	heta_2,ldots, 	heta_k) (其中 	extstyle 	heta_j in Re^{n+1}),我们可以令 	extstyle 	heta_1 =
vec{0},只优化剩余的 	extstyle (k-1)	imes(n+1) 个参数,这样算法依然能够正常工作。


    在实际应用中,为了使算法实现更简单清楚,往往保留所有参数 	extstyle (	heta_1, 	heta_2,ldots, 	heta_n),而不任意地将某一参数设置为 0。但此时我们需要对代价函数做一个改动:加入权重衰减。权重衰减可以解决 softmax 回归的参数冗余所带来的数值问题。

    Softmax 回归 vs. k 个二元分类器

    如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

    这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

    如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

    现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?

    在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

    代码实现

    # -*- coding: utf-8 -*-
    """
    Created on Wed Nov 29 19:40:50 2017
    
    @author: 702
    """
    #softmax 数字识别
    import tensorflow as tf
    from tensorflow.examples.tutorials.mnist import input_data
    
    mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
    print("Download Done!")
    
    x = tf.placeholder(tf.float32, [None, 784])#784输入图片维度
    
    # paras
    W = tf.Variable(tf.zeros([784, 10]))       #权重 
    b = tf.Variable(tf.zeros([10]))            #偏置
    
    y = tf.nn.softmax(tf.matmul(x, W) + b)    #回归模型计算每个分类概率值
    y_ = tf.placeholder(tf.float32, [None, 10])
    
    # loss func
    #损失函数-目标类别和预测类别之间的交叉熵
    cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
    
    train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
    
    # init
    init = tf.initialize_all_variables()
    
    sess = tf.Session()
    sess.run(init)
    
    # train
    for i in range(1000):
        batch_xs, batch_ys = mnist.train.next_batch(100)
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    
    correct_prediction = tf.equal(tf.arg_max(y, 1), tf.arg_max(y_, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
    print (sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
    

      希望再学习下tensorflow中有tensorboard工具,进行网络可视化。

     

     

    转载请说明出处!
  • 相关阅读:
    HDU 2089 不要62
    NOIP 2012 疫情控制
    提高工作效率的shell工具
    log loss与ctr预估
    推荐系统
    浮点数的间隙
    graphviz初学入门指南
    sparse_hash_map、dense_hash_map和sparsetable的实现细节
    每天离不开的工具vim
    安利开发利器 -- tmux
  • 原文地址:https://www.cnblogs.com/zengshangzhi/p/7922653.html
Copyright © 2011-2022 走看看