zoukankan      html  css  js  c++  java
  • [模板]BM求线性递推式

    要求第n项时,直接linear_seq::(gao,n)即可,

    不放第0项的话,就是linear_seq::(gao,n-1)

    #include<bits/stdc++.h>
     
    using namespace std;
     
    typedef long long ll;
     
    const ll mod=1e9+7;
    const int N=1024;
     
    ll modpow(ll a,ll b,ll mod) {ll res=1;a%=mod; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    ll inv(ll x){return modpow(x,mod-2,mod);}
     
    namespace linear_seq {
    	#define rep(i,a,n) for (int i=a;i<n;i++)
    	#define per(i,a,n) for (int i=n-1;i>=a;i--)	
    	#define pb push_back
    	#define mp make_pair
    	#define all(x) (x).begin(),(x).end()
    	#define fi first
    	#define se second
    	#define SZ(x) ((int)(x).size())
    	typedef vector<int> VI;
    	typedef pair<int,int> PII;
    	typedef long long ll;
    	const ll mod=1e9+7;
        const int N=10010;
        ll res[N],base[N],_c[N],_md[N];
     	ll modpow(ll a,ll b,ll mod) {ll res=1;a%=mod; for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
        vector<int> Md;
        void mul(ll *a,ll *b,int k) {
            rep(i,0,k+k) _c[i]=0;
            rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (int i=k+k-1;i>=k;i--) if (_c[i])
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            rep(i,0,k) a[i]=_c[i];
        }
        int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //        printf("%d
    ",SZ(b));
            ll ans=0,pnt=0;
            int k=SZ(a);
           // assert(SZ(a)==SZ(b));
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
            rep(i,0,k) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (int p=pnt;p>=0;p--) {
                mul(res,res,k);
                if ((n>>p)&1) {
                    for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        VI BM(VI s) {
            VI C(1,1),B(1,1);
            int L=0,m=1,b=1;
            rep(n,0,SZ(s)) {
                ll d=0;
                rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n) {
                    VI T=C;
                    ll c=mod-d*modpow(b,mod-2,mod)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                } else {
                    ll c=mod-d*modpow(b,mod-2,mod)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        int gao(VI a,ll n) {
            VI c=BM(a);
            c.erase(c.begin());
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
        }
    };
    vector<int>ans;
    ll dp[2*N],p,n;
    int t,k;
    int main()
    {
    	scanf("%d",&t);
    	while(t--)
    	{
    		scanf("%d%lld",&k,&n);
    		if(n==-1)
    		{
    			printf("%lld
    ",2*inv(k+1)%mod);//2/(k-1)
    			continue;
    		}
    		p=inv(k);
    		dp[0]=1;//dp[n]=1/k dp[n-1] +1/k dp[n-2]+...+1/k dp[n-k]
    		ans.clear();
    		ans.push_back(dp[0]); 
    		for(int i=1;i<=2*k;++i)
    		{
    			dp[i]=0;
    			for(int j=max(i-k,0);j<i;++j)
    			{
    				dp[i]=(dp[i]+dp[j])%mod;
    			}
    			dp[i]=dp[i]*p%mod;//1/k
    			ans.push_back(dp[i]); 
    		}
    		printf("%d
    ",linear_seq::gao(ans,n));
    	}
    	return 0;
    }
  • 相关阅读:
    洛谷 P1213 时钟 &&IOI 1994 The Clocks
    P1457 城堡 The Castle
    [USACO08OCT]牧场散步Pasture Walking
    洛谷 P1262 间谍网络
    [USACO09DEC]牛收费路径Cow Toll Paths
    1266: [AHOI2006]上学路线route
    1093: [ZJOI2007]最大半连通子图
    洛谷 P3797 妖梦斩木棒
    1821: [JSOI2010]Group 部落划分 Group
    2019中国产业互联网领袖峰会(上海)
  • 原文地址:https://www.cnblogs.com/zeolim/p/12270333.html
Copyright © 2011-2022 走看看