zoukankan      html  css  js  c++  java
  • [并查集] D. 0-1-Tree

    You are given a tree (an undirected connected acyclic graph) consisting of nn vertices and n−1n−1 edges. A number is written on each edge, each number is either 00 (let's call such edges 00-edges) or 11 (those are 11-edges).

    Let's call an ordered pair of vertices (x,y)(x,y) (x≠yx≠y) valid if, while traversing the simple path from xx to yy, we never go through a 00-edge after going through a 11-edge. Your task is to calculate the number of valid pairs in the tree.

    Input

    The first line contains one integer nn (2≤n≤2000002≤n≤200000) — the number of vertices in the tree.

    Then n−1n−1 lines follow, each denoting an edge of the tree. Each edge is represented by three integers xixi, yiyi and cici (1≤xi,yi≤n1≤xi,yi≤n, 0≤ci≤10≤ci≤1, xi≠yixi≠yi) — the vertices connected by this edge and the number written on it, respectively.

    It is guaranteed that the given edges form a tree.

    Output

    Print one integer — the number of valid pairs of vertices.

     题意:给定一颗树, 求满足任意两点间先0后1路径条数


    思路:如图所示

    以1为当前节点

    由树的性质则必有当前节点的1最大联通块为1路径条数 sa (3)

    当前节点的0最大联通块为0路径条数 sb (3)

    则有通过当前节点且符合题意的路径有 sa * sb - 1(减去当前节点自身的重复统计)

    所以用并查集维护节点的最大联通块计算答案即可


    代码:

    /*
        Zeolim - An AC a day keeps the bug away
    */
    
    //#pragma GCC optimize(2)
    #include <cstdio>
    #include <iostream>
    #include <cstdlib>
    #include <cmath>
    #include <cctype>
    #include <string>
    #include <cstring>
    #include <algorithm>
    #include <stack>
    #include <queue>
    #include <set>
    #include <sstream>
    #include <map>
    #include <ctime>
    #include <vector>
    #include <fstream>
    #include <list>
    #include <iomanip>
    #include <numeric>
    using namespace std;
    typedef long long ll;
    typedef long double ld;
    const int INF = 0x3f3f3f3f;
    const ld PI = acos(-1.0);
    const ld E = exp(1.0);
    
    const int MAXN = 1e6 + 10;
    
    ll fa[MAXN], fb[MAXN], vla[MAXN], vlb[MAXN];
    
    int findfa(int x)
    {
        return x == fa[x] ? x : fa[x] = findfa(fa[x]);
    }
    
    int findfb(int x)
    {
        return x == fb[x] ? x : fb[x] = findfb(fb[x]);
    }
    
    int main()
    {
        //ios::sync_with_stdio(false);
        //cin.tie(0);     cout.tie(0);
        //freopen("D://test.in", "r", stdin);
        //freopen("D://test.out", "w", stdout);
    
        int n;
    
        cin >> n;
    
        for(int i = 0; i <= n; ++i)
        {
            fa[i] = fb[i] = i;
            vla[i] = vlb[i] = (ll)1;
        }
    
        for(int i = 1; i < n; ++i)
        {
            int a, b, val;
    
            cin >> a >> b >> val;
    
            if(val == 1)
            {
                int p = findfa(a), q = findfa(b);
                fa[p] = q;
                vla[q] += vla[p];
            }
    
            else
            {
                int p = findfb(a), q = findfb(b);
                fb[p] = q;
                vlb[q] += vlb[p];
            }
        }
    
        ll ans = 0;
    
        for(int i = 1; i <= n; ++i)
        {
        	int p = findfa(i), q = findfb(i);
            ll tsum = vla[p] * vlb[q] - 1ll;
            ans += (tsum);
        }   
    
        cout << ans << '
    ';
        
        return 0;
    }
  • 相关阅读:
    python基础—函数装饰器
    python基础—函数嵌套与闭包
    Python之三级菜单
    Python之运算符
    Python之字典
    Python之购物车
    Python之列表
    Python之布尔
    Python之“Hello World”
    Python之递归函数
  • 原文地址:https://www.cnblogs.com/zeolim/p/12270367.html
Copyright © 2011-2022 走看看