zoukankan      html  css  js  c++  java
  • Codeforces Round #296 (Div. 2)——A——Playing with Paper

    One day Vasya was sitting on a not so interesting Maths lesson and making an origami from a rectangular a mm  ×  b mm sheet of paper (a > b). Usually the first step in making an origami is making a square piece of paper from the rectangular sheet by folding the sheet along the bisector of the right angle, and cutting the excess part.

    After making a paper ship from the square piece, Vasya looked on the remaining (a - b) mm  ×  b mm strip of paper. He got the idea to use this strip of paper in the same way to make an origami, and then use the remainder (if it exists) and so on. At the moment when he is left with a square piece of paper, he will make the last ship from it and stop.

    Can you determine how many ships Vasya will make during the lesson?

    Input

    The first line of the input contains two integers ab (1 ≤ b < a ≤ 1012) — the sizes of the original sheet of paper.

    Output

    Print a single integer — the number of ships that Vasya will make.

    Sample test(s)
    input
    2 1
    output
    2
    input
    10 7
    output
    6
    input
    1000000000000 1
    output
    1000000000000
    Note

    Pictures to the first and second sample test.

    大意:注意long long 要用lld输出,不过cf不能用就用cout,用d结果后面一直是零-0-好灵异

    typedef long long ll;方便

    #include<cstdio>
    #include<algorithm>
    #include<iostream>
    using namespace std;
    typedef long long ll;
    int main()
    {
        ll a,b;
        ll flag = 0;
       cin >> a >> b;
        if(a > b) ;
        else {
              ll  temp = a;
                a = b;
                b = temp;
        }
        while(a%b){
             flag += a/b;
            ll temp = b;
             b = a - (a/b)*b;
             a = temp;
        }
        flag += a/b;
       cout << flag;
    }
    View Code
  • 相关阅读:
    【Shell】 计算文件 交集,并集和差集
    http协议--Apache-Httpd服务基本配置-rpm安装-编译安装(HTTP2.2,HTTP2.4)
    进程管理工具
    Linux系统原理(工作模式)
    网络协议和管理
    网络通信安全基础(加密方式,OpenSSL)
    BZOJ 2969 期望
    BZOJ 2118 Dijkstra
    BZOJ 1407 exgcd
    BZOJ 2406 二分+有上下界的网络流判定
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4346922.html
Copyright © 2011-2022 走看看