zoukankan      html  css  js  c++  java
  • POJ2533——DP(LCS+LDS)——Longest Ordered Subsequence

    Description

    A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1a2, ..., aN) be any sequence (ai1ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

    Your program, when given the numeric sequence, must find the length of its longest ordered subsequence.

    Input

    The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000

    Output

    Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence.

    Sample Input

    7
    1 7 3 5 9 4 8

    Sample Output

    4
    

    Source

    Northeastern Europe 2002, Far-Eastern Subregion
    大意:没什么好说的~模板题,取最大就行
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    const int MAX = 11000;
    int a[MAX],b[MAX];
    int main()
    {
        int n;
        int l,r,mid;
        scanf("%d",&n);
        for(int i = 1; i <= n ;i++)
            scanf("%d",&a[i]);
            // LCS
        b[1] = a[1];
        int k,i;
        for(i = 2, k = 1; i <= n ;i++){
                if(a[i] > b[k]) b[++k] = a[i];
               else {
                l = 1; r = k;
                  while(l<=r){
                       mid = (l + r) >> 1;
                       if(b[mid] < a[i]) l = mid + 1;
                       else if(b[mid] > a[i]) r = mid - 1;
                       else break;
                  }
                  b[l] =a[i];
               }
        }
        int temp1 = k;
        // LDS
        memset(b,0,sizeof(b));
        b[1] = a[1];
        for(i = 2, k = 1; i <= n ;i++){
               if(a[i] < b[i]) b[++k] = a[i];
              else {
                  l = 1; r = k;
                 while(l <= r){
                  mid = (l + r) >> 1;
                 if(b[mid] > a[i]) l = mid + 1;
                 else if(b[mid] < a[i]) r = mid -1;
                 else break;
                 }
                 b[l] = a[i];
              }
        }
        int temp2 = k;
        printf("%d",max(temp1,temp2));
        return 0;
    }
    View Code
  • 相关阅读:
    OpenCMS创建导航条
    C++笔记(2)面向对象编程
    C++笔记(3)模板与泛型编程
    多线程和信号量
    C++笔记(4)用于大型程序的工具
    C++笔记(5)特殊工具与技术
    C++笔记(1)类
    Effective C++ 笔记(1)
    C语言笔记整理(2)
    C语言笔记整理(3)
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4366079.html
Copyright © 2011-2022 走看看