zoukankan      html  css  js  c++  java
  • POJ2739——DFS——Sum of Consecutive Prime Numbers

    Description

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime 
    numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20. 
    Your mission is to write a program that reports the number of representations for the given positive integer.

    Input

    The input is a sequence of positive integers each in a separate line. The integers are between 2 and 10 000, inclusive. The end of the input is indicated by a zero.

    Output

    The output should be composed of lines each corresponding to an input line except the last zero. An output line includes the number of representations for the input integer as the sum of one or more consecutive prime numbers. No other characters should be inserted in the output.

    Sample Input

    2
    3
    17
    41
    20
    666
    12
    53
    0

    Sample Output

    1
    1
    2
    3
    0
    0
    1
    2
    大意:连续素数共有多少种,用了DFS的思想,看来还是不会DFS OTZ去看了题解
    #include<cstdio>
    #include<cstring>
    #include<cmath>
    using namespace std;
    int pri[2000] = {2};
    int count = 0;
    void prime()
    {
       int temp = 1;
       int i,j;
       for( i = 3; i <= 10000;i++){
            for( j = 2; j <= i/2;j++)
                if(i%j == 0)
                break;
           if(j > i/2) pri[temp++] = i;
       }
    }
    int num(int n,int i)
    {
        if(n-pri[i] == 0)
            count++;
        else if( n - pri[i] > 0)
           num(n-pri[i],i-1);
        return 0;
    }
    int main()
    {
        int n,k;
        prime();
    
        while(~scanf("%d",&n)&&n){
                count = 0;
        for(int i = 0; i < 2000;i++){
            if(pri[i] == n) {
                count++;
                k = i -1;
                break;
            }
            else if( n < pri[i]){
                k = i -1;
               break;
            }
        }
        for(int i = k ; i >= 0;i--)
          num(n,i);
        printf("%d
    ",count);
        }
        return 0;
    }
    View Code
     
  • 相关阅读:
    关于同步解释
    dll 问题 (转)
    SQL SERVER 触发器中如何调用外部程序
    SQL SERVER所有表、字段名、主键、类型、长度、小数位数等信息
    variant 和 Stream 的互換
    Variant的相关函数
    使用 wxPython 创建“目录树”(5)
    wxPython 绘图演示——模拟雷达信号图(2)
    wxpython 实现简易画板(1)
    使用 wx.tools.img2py (4)
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4372634.html
Copyright © 2011-2022 走看看