zoukankan      html  css  js  c++  java
  • POJ2559——DP——Largest Rectangle in a Histogram

    Description

    A histogram is a polygon composed of a sequence of rectangles aligned at a common base line. The rectangles have equal widths but may have different heights. For example, the figure on the left shows the histogram that consists of rectangles with the heights 2, 1, 4, 5, 1, 3, 3, measured in units where 1 is the width of the rectangles: 

    Usually, histograms are used to represent discrete distributions, e.g., the frequencies of characters in texts. Note that the order of the rectangles, i.e., their heights, is important. Calculate the area of the largest rectangle in a histogram that is aligned at the common base line, too. The figure on the right shows the largest aligned rectangle for the depicted histogram.

    Input

    The input contains several test cases. Each test case describes a histogram and starts with an integer n, denoting the number of rectangles it is composed of. You may assume that 1<=n<=100000. Then follow n integers h1,...,hn, where 0<=hi<=1000000000. These numbers denote the heights of the rectangles of the histogram in left-to-right order. The width of each rectangle is 1. A zero follows the input for the last test case.

    Output

    For each test case output on a single line the area of the largest rectangle in the specified histogram. Remember that this rectangle must be aligned at the common base line.

    Sample Input

    7 2 1 4 5 1 3 3
    4 1000 1000 1000 1000
    0
    

    Sample Output

    8
    4000
    

    HINT

    Huge input, scanf is recommended.

    #include<cstdio>
    using namespace std;
    const int MAX = 1000000;
    int h[MAX],L[MAX],R[MAX];
    int stack[MAX];
    int n;
    void solve()
    {
      int n;
      int t = 0;
        for(int i = 0 ; i < n; ++i){
            while(t > 0 && h[stack[t-1]] >= h[i]) t--;
            L[i] = ( t == 0) ? 0: stack[t-1];
            stack[t++] = i;
        }
        t = 0;
        for(int i = n - 1 ; i >= 0 ;--i){
            while(t > 0 && h[stack[t-1]] >= h[i]) t--;
            R[i] = (t == 0) ? n : stack[t-1];
           stack[t++] = i;
        }
        long long max1 = 0;
       for(int i = 0 ; i < n ;i++){
          max1 = max(max1,(long long)h[i]*(R[i] - L[i] + 1));
       }
      printf("%lld
    ",max1);
    }
    int main()
    {
        while(~scanf("%d",&n)&&n){
            for(int i = 0 ; i < n; i++)
                scanf("%d",&h[i]);
            solve();
        }
        return 0;
    }
    View Code

    利用

    L[i] = (j <= i并且h[j-1] < h[i]的最大的j)

    R[i] = (j > i并且h[j] > h[i]的最小的j)

  • 相关阅读:
    前端布局
    mysql默认数据库
    js 计算两个颜色之间的渐变色值 10个色值
    chrome network中的stalled阶段耗时含义
    linux软件源码安装与封装包安装
    如何分辨linux文件颜色
    linux 文件权限
    linux端口查看
    suse linux光盘挂载
    记一次tortoiese git误提交的问题
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4418321.html
Copyright © 2011-2022 走看看