zoukankan      html  css  js  c++  java
  • HDU1520——树形DP——Anniversary party

    Problem Description
    There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each employee, so everyone has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests' conviviality ratings.
     
    Input
    Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding employee. Conviviality rating is an integer number in a range from -128 to 127. After that go T lines that describe a supervisor relation tree. Each line of the tree specification has the form: 
    L K 
    It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line 
    0 0
     
    Output
    Output should contain the maximal sum of guests' ratings.
     
    Sample Input
    7 1 1 1 1 1 1 1 1 3 2 3 6 4 7 4 4 5 3 5 0 0
     
    Sample Output
    5
     
    Source

     大意:给你一些人的快乐指数,而且满足下级不能与直接上级一起去参加party,求最大的快乐指数

    定义 dp[i][j] 表示第i个人去还是没去

    状态转移方程 dp[x][1] += dp[G[x][i]][1];

                      dp[x][0] += max(dp[G[x][i]][1],dp[G[x][i]][0]);

    用并查集的思想找到根,对着根进行DFS

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #include<vector>
    using namespace std;
    int dp[6100][2];
    int t[6100];
    int f[6100];
    vector<int> G[6100];
    void dfs(int x)
    {
        dp[x][1] = t[x];
        for(int i = 0; i < G[x].size(); i++){
            dfs(G[x][i]);
        }
        for(int i = 0 ; i < G[x].size();i++){
            dp[x][1] += dp[G[x][i]][0];
            dp[x][0] += max(dp[G[x][i]][1],dp[G[x][i]][0]);
        }
    }
    
    int main()
    {
        int n,a,b;
        while(~scanf("%d",&n)){
            for(int i = 1; i <= n; i++)
                G[i].clear();
            for(int i = 1; i <= n ; i++)
                scanf("%d",&t[i]);
            memset(f,-1,sizeof(f));
            memset(dp,0,sizeof(dp));
            while(~scanf("%d%d",&a,&b)){
                    if(a == 0 && b == 0) break;
                G[b].push_back(a);
                f[a] = b;
            }
           // for(int i = 1;  i<= n ;i++)
           //     printf("%d ",f[i]);
            int x = 1;
            while(f[x]!= -1) {
                x = f[x];
            }
            dfs(x);
        printf("%d
    ",max(dp[x][0],dp[x][1]));
        }
        return 0;
    }
    

      

  • 相关阅读:
    输入属性,输出属性
    angular响应式表单
    angular 响应式表单指令
    c++ Primer
    CString 操作函数
    字符串分割strtok_s
    LPSTR LPTSTR
    CString分割切分
    CStringArray
    十进制
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4520928.html
Copyright © 2011-2022 走看看