zoukankan      html  css  js  c++  java
  • Codeforces 445B——并查集或DFS——DZY Loves Chemistry

    DZY loves chemistry, and he enjoys mixing chemicals.

    DZY has n chemicals, and m pairs of them will react. He wants to pour these chemicals into a test tube, and he needs to pour them in one by one, in any order.

    Let's consider the danger of a test tube. Danger of an empty test tube is 1. And every time when DZY pours a chemical, if there are already one or more chemicals in the test tube that can react with it, the danger of the test tube will be multiplied by 2. Otherwise the danger remains as it is.

    Find the maximum possible danger after pouring all the chemicals one by one in optimal order.

    Input

    The first line contains two space-separated integers n and m.

    Each of the next m lines contains two space-separated integers xi and yi(1 ≤ xi < yi ≤ n). These integers mean that the chemical xi will react with the chemical yi. Each pair of chemicals will appear at most once in the input.

    Consider all the chemicals numbered from 1 to n in some order.

    Output

    Print a single integer — the maximum possible danger.

    Sample Input

    Input
    1 0
    Output
    1
    Input
    2 1
    1 2
    Output
    2
    Input
    3 2
    1 2
    2 3
    Output
    4

    Hint

    In the first sample, there's only one way to pour, and the danger won't increase.

    In the second sample, no matter we pour the 1st chemical first, or pour the 2nd chemical first, the answer is always 2.

    In the third sample, there are four ways to achieve the maximum possible danger: 2-1-3, 2-3-1, 1-2-3 and 3-2-1 (that is the numbers of the chemicals in order of pouring).

    并查集做法:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    using namespace std;
    
    int p[1110];
    int t[1100];
    
    int find(int x)
    {
        return x == p[x] ? x : p[x] = find(p[x]);
    }
    
    void join(int x,int y)
    {
        int fx = find(x);
        int fy = find(y);
        if(fx != fy)
            p[fx] = fy;
    }
    
    int main()
    {
        int n, m;
        int x, y;
        while(~scanf("%d%d", &n, &m)){
            memset(t, 0, sizeof(t));
            for(int i = 1; i <= n; i++)
                p[i] = i;
            for(int i = 1; i <= m; i++){
                scanf("%d%d", &x, &y);
                join(x, y);
            }
            for(int i = 1; i <= n; i++)
                t[find(i)] = 1;
            int ans = 0;
            for(int i = 1; i <= n ;i++)
                if(t[i])
                    ans++;
            ans = n - ans ;
            long long  sum = 1;
            for(int i = 1; i <= ans ; i++)
                sum *= 2;
            printf("%lld
    ", sum);
        }
        return 0;
    }
    

      DFS做法:

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <vector>
    using namespace std;
    
    vector <int> G[1100];
    int vis[1100];
    int a[1100];
    int n, m;
    void dfs(int u)
    {
        if(!vis[u]){
            vis[u] = 1;
            for(int i = 0; i < G[u].size(); i++){
                int v = G[u][i];
                dfs(v);
            }
        }
    
    }
    
    int main()
    {
        while(~scanf("%d%d", &n, &m)){
            int x, y;
            memset(vis, 0, sizeof(vis));
            for(int i = 1; i <= m ;i++){
                scanf("%d%d", &x, &y);
                G[x].push_back(y);
                G[y].push_back(x);
            }
            int ans = n;
            for(int i = 1; i <= n; i++){
                if(!vis[i]){
                    dfs(i);
                    ans--;
                }
            }
                long long sum = 1;
                for(int i = 1; i <= ans ;i++)
                    sum *= 2;
                printf("%lld
    ", sum);
        }
        return 0;
    }
    

      

  • 相关阅读:
    POJ 2541 Binary Witch(逆序KMP,好题)
    POJ 2185 Milking Grid (KMP,求最小覆盖子矩阵,好题)
    POJ 3336 Count the string (KMP+DP,好题)
    POJ 1961 2406 (KMP,最小循环节,循环周期)
    POJ 3450 Corporate Identity (KMP,求公共子串,方法很妙)
    KMP模板,最小循环节
    BZOJ 2741 【FOTILE模拟赛】L(可持久化trie)
    BZOJ 2820 YY的GCD(莫比乌斯反演)
    VIJOS 1889 天真的因数分解(莫比乌斯反演,容斥原理)
    BZOJ 2440 完全平方数(莫比乌斯反演,容斥原理)
  • 原文地址:https://www.cnblogs.com/zero-begin/p/4667277.html
Copyright © 2011-2022 走看看