1. 消息认证码
1.1 消息认证
消息认证码(message authentication code)是一种确认完整性并进行认证的技术,取三个单词的首字母,简称为MAC。
-
思考改进方案?
从哈希函数入手
需要将要发送的数据进行哈希运算, 将哈希值和原始数据一并发送
需要在进行哈希运算的时候引入加密的步骤
- 在alice对数据进行哈希运算的时候引入一个秘钥, 让其参与哈希运算, 生成散列值
- bob对数据校验
- bob收到原始和散列值之后,
- 处理原始数据: 通过秘钥和哈希算法对原始数据生成散列值
- 散列值比较: 生成的散列值 和 接收到的散列值进行比对
- bob收到原始和散列值之后,
1.2 消息认证码的使用步骤
- 前提条件:
- 在消息认证码生成的一方和校验的一方, 必须有一个秘钥
- 双方约定好使用同样的哈希函数对数据进行运算
- 流程:
- 发送者:
- 发送原始法消息
- 将原始消息生成消息认证码
- ((原始消息) + 秘钥) * 函数函数 = 散列值(消息认证码)
- 将消息认证码发送给对方
- 接收者:
- 接收原始数据
- 接收消息认证码
- 校验:
- ( 接收的消息 + 秘钥 ) * 哈希函数 = 新的散列值
- 通过新的散列值和接收的散列值进行比较
1.3 go中对消息认证码的使用
有一个包: crypto/hmac
func New(h func() hash.Hash, key []byte) hash.Hash - 返回值: hash接口 - 参数1: 函数函数的函数名 sha1.new md5.new sha256.new - 参数2: 秘钥 第二步: 添加数据 type Hash interface { // 通过嵌入的匿名io.Writer接口的Write方法向hash中添加更多数据,永远不返回错误 io.Writer // 返回添加b到当前的hash值后的新切片,不会改变底层的hash状态 Sum(b []byte) []byte // 重设hash为无数据输入的状态 Reset() // 返回Sum会返回的切片的长度 Size() int // 返回hash底层的块大小;Write方法可以接受任何大小的数据, // 但提供的数据是块大小的倍数时效率更高 BlockSize() int } type Writer interface { Write(p []byte) (n int, err error) } 第三步: 计算散列值
1.4 消息认证码的问题
- 弊端
- 有秘钥分发困难的问题
- 无法解决的问题
- 不能进行第三方证明
- 不能防止否认
2. 数字签名
2.1 签名的生成和验证
- 签名
- 有原始数据对其进行哈希运算 -> 散列值
- 使用非对称加密的私钥对散列值加密 -> 签名
- 将原始数据和签名一并发送给对方
- 验证
- 接收数据
- 原始数据
- 数字签名
- 数字签名, 需要使用公钥解密, 得到散列值
- 对原始数据进行哈希运算得到新的散列值
2.2 非对称加密和数字签名
总结:
- 数据通信
- 公钥加密, 私钥解密
- 数字签名:
- 私钥加密, 公钥解密
2.3 数字签名的方法
2.4 使用RSA进行数字签名
-
使用rsa生成密钥对
- 生成密钥对
- 序列化
- 保存到磁盘文件
-
使用私钥进行数字签名
-
打开磁盘的私钥文件
-
将私钥文件中的内容读出
-
使用pem对数据解码, 得到了pem.Block结构体变量
-
x509将数据解析成私钥结构体 -> 得到了私钥
-
创建一个哈希对象 -> md5/sha1
-
给哈希对象添加数据
-
计算哈希值
-
使用rsa中的函数对散列值签名
func SignPKCS1v15(rand io.Reader, priv *PrivateKey, hash crypto.Hash, hashed []byte) (s []byte, err error) 参数1: rand.Reader 参数2: 非对称加密的私钥 参数3: 使用的哈希算法 crypto.sha1 crypto.md5 参数4: 数据计算之后得到的散列值 返回值: - s: 得到的签名数据 - err: 错误信息
-
-
使用公钥进行签名认证
-
打开公钥文件, 将文件内容读出 - []byte
-
使用pem解码 -> 得到pem.Block结构体变量
-
使用x509对pem.Block中的Bytes变量中的数据进行解析 -> 得到一接口
-
进行类型断言 -> 得到了公钥结构体
-
对原始消息进行哈希运算(和签名使用的哈希算法一致) -> 散列值
- 创建哈希接口
- 添加数据
- 哈希运算
-
签名认证 - rsa中的函数
func VerifyPKCS1v15(pub *PublicKey, hash crypto.Hash, hashed []byte, sig []byte) (err error) 参数1: 公钥 参数2: 哈希算法 -> 与签名使用的哈希算法一致 参数3: 将原始数据进行哈希原始得到的散列值 参数4: 签名的字符串 返回值: - nil -> 验证成功 - !=nil -> 失败
-
2.5 使用椭圆曲线进行数字签名
椭圆曲线在go中对应的包: import "crypto/elliptic"
使用椭圆曲线在go中进行数字签名: import "crypto/ecdsa"
美国FIPS186-2标准, 推荐使用5个素域上的椭圆曲线, 这5个素数模分别是:
P192 = 2192 - 264 - 1
P224 = 2224 - 296 + 1
P256 = 2256 - 2224 + 2192 - 296 -1
P384 = 2384 - 2128 - 296 + 232 -1
P512 = 2512 - 1
-
秘钥对称的生成, 并保存到磁盘
-
使用ecdsa生成密钥对
func GenerateKey(c elliptic.Curve, rand io.Reader) (priv *PrivateKey, err error)
-
将私钥写入磁盘
-
使用x509进行序列化
func MarshalECPrivateKey(key *ecdsa.PrivateKey) ([]byte, error)
-
将得到的切片字符串放入pem.Block结构体中
block := pem.Block{
Type : "描述....",
Bytes : MarshalECPrivateKey返回值中的切片字符串,
}
-
使用pem编码
pem.Encode();
-
-
将公钥写入磁盘
-
从私钥中得到公钥
-
使用x509进行序列化
func MarshalPKIXPublicKey(pub interface{}) ([]byte, error)
-
将得到的切片字符串放入pem.Block结构体中
block := pem.Block{
Type : "描述....",
Bytes : MarshalECPrivateKey返回值中的切片字符串,
}
-
使用pem编码
pem.Encode();
-
-
-
使用私钥进行数字签名
-
打开私钥文件, 将内容读出来 ->[]byte
-
使用pem进行数据解码 -> pem.Decode()
-
使用x509, 对私钥进行还原
func ParseECPrivateKey(der []byte) (key *ecdsa.PrivateKey, err error)
-
对原始数据进行哈希运算 -> 散列值
-
进行数字签名
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) - 得到的r和s不能直接使用, 因为这是指针 应该将这两块内存中的数据进行序列化 -> []byte func (z *Int) MarshalText() (text []byte, err error)
-
-
使用公钥验证数字签名
-
打开公钥文件, 将里边的内容读出 -> []byte
-
pem解码 -> pem.Decode()
-
使用x509对公钥还原
func ParsePKIXPublicKey(derBytes []byte) (pub interface{}, err error)
-
将接口 -> 公钥
-
对原始数据进行哈希运算 -> 得到散列值
-
签名的认证 - > ecdsa
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool - 参数1: 公钥 - 参数2: 原始数据生成的散列值 - 参数3,4: 通过签名得到的连个点 func (z *Int) UnmarshalText(text []byte) error
-
2.6 数字签名无法解决的问题
-> 得到散列值
签名的认证 - > ecdsa
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool - 参数1: 公钥 - 参数2: 原始数据生成的散列值 - 参数3,4: 通过签名得到的连个点 func (z *Int) UnmarshalText(text []byte) error