zoukankan      html  css  js  c++  java
  • UVA 1364

    尤其是不要谈了些什么,我想A这个问题!

    FML啊.....!


    题意来自 kuangbin:

    亚瑟王要在圆桌上召开骑士会议。为了不引发骑士之间的冲突。 而且可以让会议的议题有令人惬意的结果,每次开会前都必须对出席会议的骑士有例如以下要求: 1、  相互憎恨的两个骑士不能坐在直接相邻的2个位置; 2、  出席会议的骑士数必须是奇数,这是为了让投票表决议题时都能有结果。  
    注意:1、所给出的憎恨关系一定是双向的。不存在单向憎恨关系。 2、因为是圆桌会议。则每一个出席的骑士身边必然刚好有2个骑士。

    即每一个骑士的座位两边都必然各有一个骑士。 3、一个骑士无法开会,就是说至少有3个骑士才可能开会。  
    首先依据给出的互相憎恨的图中得到补图。 然后就相当于找出不能形成奇圈的点。 利用以下两个定理: (1)假设一个双连通分量内的某些顶点在一个奇圈中(即双连通分量含有奇圈)。 那么这个双连通分量的其它顶点也在某个奇圈中; (2)假设一个双连通分量含有奇圈,则他必然不是一个二分图。反过来也成立。这是一个充要条件。

     
    所以本题的做法,就是对补图求点双连通分量。 然后对于求得的点双连通分量,使用染色法推断是不是二分图,不是二分图。这个双连通分量的点是能够 存在的 */


    这样,思路例如以下:

    1.找出全部的双连通分量;

    2.推断找出的双联通分量似不似一个二分图,假设是二分图,说明它不含有奇圈,不符合题意,反之符合题意,所以在该连通分量中的点都是能够上桌开会的点...


    详细思路就是这个样子了~然后照着刘汝佳大白书上的 找双联通分量 的算法,以及 染色法判二分图 的方法,就ok了


    没有办法。太水了我仅仅能理解到这里才干做题了尼玛啊 !

    T_T.....

    没有大神讲,变量的意思想了一上午卧槽好傻逼。

    。。


    接下来会有一篇给一些变量凝视的!

    大白书上的代码。造福弱逼不用谢。

    #include <cstdio>  
    #include <cstring>  
    #include <vector>  
    #include <stack>  
    using namespace std;  
      
    const int N = 1005;  
      
    struct Edge {  
        int u, v;  
        Edge() {}  
        Edge(int u, int v) {  
            this->u = u;  
            this->v = v;  
        }  
    };  
                ///bccno[]是用来表示 编号为i的点在哪一个双连通分量中!

    ///bcc_cnt是用来表示 总共同拥有几个双连通分量 int pre[N], bccno[N], dfs_clock, bcc_cnt; bool iscut[N]; vector<int> g[N], bcc[N];///用来存下来每个双连通分量 stack<Edge> S; int dfs_bcc(int u, int fa) { int lowu = pre[u] = ++dfs_clock; int child = 0; for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; Edge e = Edge(u, v); if (!pre[v]) { S.push(e); child++; int lowv = dfs_bcc(v, u); lowu = min(lowu, lowv); if (lowv >= pre[u]) { iscut[u] = true; bcc_cnt++; bcc[bcc_cnt].clear(); //start from 1 while(1) { Edge x = S.top(); S.pop(); if (bccno[x.u] != bcc_cnt) {bcc[bcc_cnt].push_back(x.u); bccno[x.u] = bcc_cnt;} if (bccno[x.v] != bcc_cnt) {bcc[bcc_cnt].push_back(x.v); bccno[x.v] = bcc_cnt;} if (x.u == u && x.v == v) break; } } } else if (pre[v] < pre[u] && v != fa) { S.push(e); lowu = min(lowu, pre[v]); } } if (fa < 0 && child == 1) iscut[u] = false; return lowu; } void find_bcc(int n) { memset(pre, 0, sizeof(pre)); memset(iscut, 0, sizeof(iscut)); memset(bccno, 0, sizeof(bccno)); dfs_clock = bcc_cnt = 0; for (int i = 0; i < n; i++) if (!pre[i]) dfs_bcc(i, -1); } int odd[N], color[N]; bool bipartite(int u, int b) { for (int i = 0; i < g[u].size(); i++) { int v = g[u][i]; if (bccno[v] != b) continue; if (color[v] == color[u]) return false; if (!color[v]) { color[v] = 3 - color[u]; if (!bipartite(v, b)) return false; } } return true; } int n, m, A[N][N]; int main() { int cas = 0; while (~scanf("%d%d", &n, &m) && n) { for (int i = 0; i < n; i++) g[i].clear(); memset(A, 0, sizeof(A)); for (int i = 0; i < m; i++) { int u, v; scanf("%d%d", &u, &v); u--; v--; A[u][v] = A[v][u] = 1; } for (int u = 0; u < n; u++) { for (int v = u + 1; v < n; v++) if (!A[u][v]) { g[u].push_back(v); g[v].push_back(u); } } find_bcc(n); memset(odd, 0, sizeof(odd)); for (int i = 1; i <= bcc_cnt; i++) { memset(color, 0, sizeof(color)); for (int j = 0; j < bcc[i].size(); j++) bccno[bcc[i][j]] = i; int u = bcc[i][0]; color[u] = 1; if (!bipartite(u, i)) { for (int j = 0; j < bcc[i].size(); j++) odd[bcc[i][j]] = 1; } } int ans = n; for (int i = 0; i < n; i++) ans -= odd[i]; printf("%d ", ans); } return 0; }










    版权声明:请注明出处撒...http://blog.csdn.net/u013382399

  • 相关阅读:
    flex4的s:states和mx:states的区别
    Flash Builder快捷键
    PE经典DIY案例1:全解开方案让量产PE也能
    U+V2深度隐藏PE制作技术初探
    SQL Server存储过程的删除方法
    利用sql server直接创建日历
    推荐一个好的数据库工具Embarcadero DBArtisan
    css样式大全(整理版)
    asp.net Excel导入&导出
    SQL删除重复数据方法
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/4823496.html
Copyright © 2011-2022 走看看