<span style="color:#3333ff;">/*A - 二分法 基础 Time Limit:15000MS Memory Limit:228000KB 64bit IO Format:%I64d & %I64u Submit Status Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the same size n . Input The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 2 28 ) that belong respectively to A, B, C and D . Output For each input file, your program has to write the number quadruplets whose sum is zero. Sample Input 6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45 Sample Output 5 Hint Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30). By Grant Yuan 2014.7.14 二分 */ #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<algorithm> using namespace std; long long a[4002],b[4002],c[4002],d[4002]; int n; long long num1[16000004]; long long num2[16000004]; int top; long long sum; int binary(long k,int left,int right) { int i; while(left<=right){ int mid=(left+right)/2; int num=0; if(num2[mid]==k) { num=1; for(i=mid-1;i>=0&&num2[i]==k;i--) num++; for(i=mid+1;i<n*n&&num2[i]==k;i++) num++; return num; } else if(num2[mid]>k) right=mid-1; else left=mid+1; } return 0; } int main() { cin>>n; long long flag; for(int i=0;i<n;i++) cin>>a[i]>>b[i]>>c[i]>>d[i]; top=-1; sum=0; for(int i=0;i<n;i++) for(int j=0;j<n;j++) { num1[++top]=a[i]+b[j]; num2[top]=c[i]+d[j]; } sort(num1,num1+top+1); sort(num2,num2+top+1); for(int i=0;i<=top;i++) { flag=-num1[i]; sum+=binary(flag,0,top+1); } cout<<sum<<endl; return 0; } </span>