zoukankan      html  css  js  c++  java
  • SDUT Fermat’s Chirstmas Theorem(素数筛)

    Fermat’s Chirstmas Theorem

    Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

    题目描写叙述

    In a letter dated December 25, 1640; the great mathematician Pierre de Fermat wrote to Marin Mersenne that he just proved that an odd prime p is expressible as p = a2 + b2 if and only if p is expressible as p = 4c + 1. As usual, Fermat didn’t include the proof, and as far as we know, never
    wrote it down. It wasn’t until 100 years later that no one other than Euler proved this theorem.
    To illustrate, each of the following primes can be expressed as the sum of two squares:
    5 = 22 + 12
    13 = 32 + 22
    17 = 42 + 12
    41 = 52 + 42
    Whereas the primes 11, 19, 23, and 31 cannot be expressed as a sum of two squares. Write a program to count the number of primes that can be expressed as sum of squares within a given interval.
     
     

    输入

    Your program will be tested on one or more test cases. Each test case is specified on a separate input line that specifies two integers L, U where L ≤ U < 1, 000, 000
    The last line of the input file includes a dummy test case with both L = U = −1.
     

    输出

    L U x y
    where L and U are as specified in the input. x is the total number of primes within the interval [L, U ] (inclusive,) and y is the total number of primes (also within [L, U ]) that can be expressed as a sum of squares.
     

    演示样例输入

    10 20
    11 19
    100 1000
    -1 -1
    

    演示样例输出

    10 20 4 2
    11 19 4 2
    100 1000 143 69
    
    
    果然蛋疼的一道题。题意说的非常清楚,就用素数筛暴力就能够了,有一个坑就是比方范围是 1-2 这时1也是符合条件的,由于      1==4*0+1且1==0*0+1*1(尽管1不是素数。但为什么会有有这样的数据?)
    <pre name="code" class="html">#include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <cctype>
    #include <cstdlib>
    #include <algorithm>
    #include <set>
    #include <vector>
    #include <string>
    #include <map>
    #include <queue>
    using namespace std;
    const int maxn= 1000010;
    int num=0;
    int vis[maxn],prime[maxn];
    void init_prime()
    {
    	memset(vis,1,sizeof(vis));
    	vis[0]=0;vis[1]=0;
    	for(int i=0;i<=maxn;i++)
    	{
    		if(vis[i])
    		{
    			prime[++num]=i;
    		    for(int j=1;j*i<=maxn;j++)
    			vis[j*i]=0;
    		}
    	}
    }
    int main()
    {
    	int L,U,i;
    	init_prime();
    	while(scanf("%d%d",&L,&U)!=EOF)
    	{
    		int cnt1=0,cnt2=0;
    		if(L==-1&&U==-1) break;
    		for(i=0;i<=num;i++)
    		{
    			if(prime[i]&&prime[i]>=L&&prime[i]<=U)
    			{
    				if((prime[i]-1)%4==0)
    					cnt2++;
    				cnt1++;
    			}
    		}
    		if(L<=2&&U>=2)
    			cnt2++;
    		printf("%d %d %d %d
    ",L,U,cnt1,cnt2);
    	}
    	return 0;
    }
     



    
    
  • 相关阅读:
    python学习Day21--内置函数、反射
    python学习Day20--属性、类方法和静态方法+类多继承算法补充
    python学习Day19--面向对象的三大特性
    python学习Day18--继承
    python学习Day17--名称空间
    python学习Day16--面向对象
    python学习Day15--递归与二分查找
    python学习Day14--内置函数
    c# 深克隆与浅克隆
    css test-align 和 margin 居中什么区别
  • 原文地址:https://www.cnblogs.com/zfyouxi/p/5133594.html
Copyright © 2011-2022 走看看