在谈到CHL Node FIFO队列之前,我们先分析这样的队列的几个要素。
首先要了解的是自旋锁。所谓自旋锁即是某一线程去尝试获取某个锁时。假设该锁已经被其它线程占用的话。此线程将不断循环检查该锁是否被释放,而不是让此线程挂起或睡眠。它属于为了保证共享资源而提出的一种锁机制,与相互排斥锁类似,保证了公共资源在随意时刻最多仅仅能由一条线程获取使用。不同的是相互排斥锁在获取锁失败后将进入睡眠或堵塞状态。以下利用代码实现一个简单的自旋锁,
public class SpinLock {
private static Unsafe unsafe = null;
private static final long valueOffset;
private volatile int value = 0;
static {
try {
unsafe=getUnsafeInstance();
valueOffset = unsafe.objectFieldOffset(SpinLock.class
.getDeclaredField("value"));
} catch (Exception ex) {
throw new Error(ex);
}
}
private static Unsafe getUnsafeInstance() throws SecurityException,
NoSuchFieldException, IllegalArgumentException,
IllegalAccessException {
Field theUnsafeInstance = Unsafe.class.getDeclaredField("theUnsafe");
theUnsafeInstance.setAccessible(true);
return (Unsafe) theUnsafeInstance.get(Unsafe.class);
}
public void lock() {
for (;;) {
int newV = value + 1;
if (unsafe.compareAndSwapInt(this, valueOffset, 0, newV)){
return ;
}
}
}
public void unlock() {
unsafe.compareAndSwapInt(this, valueOffset, 1, 0);
}
}
这是一个非常easy的自旋锁,主要看加粗加红的两个方法lock和unlock,Unsafe不过为操作提供了硬件级别的原子CAS操作,临时忽略此类,只要知道它的作用就可以,我们将在后面的“原子性怎样保证”小节中对此进行更加深入的阐述。
对于lock方法,假如有若干线程竞争,能成功通过CAS操作改动value值为newV的线程即是成功获取锁的线程。将直接通过,而其它的线程则不断在循环检測value值是否又改回0,而将value改为0的操作就是获取锁的线程运行完后对该锁进行释放,通过unlock方法释放锁,释放后若干线程又对该锁竞争。如此一来。没获取的锁也不会被挂起或堵塞,而是不断循环检查状态。图2-5-9-3可加深自旋锁的理解。五条线程轮询value变量,t1获取成功后将value置为1。此状态时其它线程无法竞争锁,t1使用完锁后将value置为0。剩下的线程继续竞争锁,以此类推。这样就保证了某个区域块的线程安全性。
图2-5-9-3 自旋锁
自旋锁适用于锁占用时间短,即锁保护临界区非常小的情景,同一时候它须要硬件级别操作。也要保证各缓存数据的一致性,另外,无法保证公平性,不保证先到先获得。可能造成线程饥饿。
在多处理器机器上,每一个线程相应的处理器都对同一个变量进行读写,而每次读写操作都将要同步每一个处理器缓存。导致系统性能严重下降。
喜欢研究java的同学能够交个朋友,以下是本人的微信号: