zoukankan      html  css  js  c++  java
  • 迷人的bug--torch.load

    利用Google Colab跑了50代的EDSR超分神经网络,然后把网络模型下载到win10上做测试,结果,一直出错,卡了好久

    结果百度到这一文章:Pytorch load深度模型时报错:RuntimeError: cuda runtime error (10) : invalid device ordinal

    引起这种报错的原因是因为pytorch在save模型的时候会把显卡的信息也保存,当重新load的时候,发现不是同一一块显卡就报错invalid device ordinal

    知道之后,我赶紧跑的colab上做测试,结果又报错

    训练默认使用了GPU,而我测试任然使用的是CPU的,所以出现以上错误

    下面是可以使用的GPU下的测试:

    from __future__ import print_function
    import argparse
    import torch
    import torch.backends.cudnn as cudnn
    from PIL import Image
    from torchvision.transforms import ToTensor
    
    import numpy as np
    
    # ===========================================================
    # Argument settings
    # ===========================================================
    parser = argparse.ArgumentParser(description='PyTorch Super Res Example')
    parser.add_argument('--input', type=str, required=False, default='/content/drive/My Drive/app/EDSR_medical/path/rgb512.tif', help='input image to use')
    parser.add_argument('--model', type=str, default='/content/drive/My Drive/app/EDSR_medical/path/EDSR_model_50.pth', help='model file to use')
    parser.add_argument('--output_filename', type=str, default='/content/drive/My Drive/app/EDSR_medical/path/out_EDSR_50.tif', help='where to save the output image')
    args = parser.parse_args()
    print(args)
    
    
    # ===========================================================
    # input image setting
    # ===========================================================
    GPU_IN_USE = torch.cuda.is_available()
    img = Image.open(args.input)
    red_c, green_c, blue_c = img.split()
    
    red_c.save('/content/drive/My Drive/app/EDSR_medical/path/red_c.tif')
    green_c.save('/content/drive/My Drive/app/EDSR_medical/path/green_c.tif')
    all_black = Image.open('/content/drive/My Drive/app/EDSR_medical/path/all_black_1024.tif')
    # ===========================================================
    # model import & setting
    # ===========================================================
    device = torch.device('cuda' if GPU_IN_USE else 'cpu')
    model = torch.load(args.model)#, map_location=lambda storage, loc: storage
    model = model.to(device)
    data = (ToTensor()(red_c)).view(1, -1, y.size[1], y.size[0])
    data = data.to(device)
    
    if GPU_IN_USE:
        cudnn.benchmark = True
    
    
    # ===========================================================
    # output and save image
    # ===========================================================
    out = model(data)
    out = out.cpu()
    out_img_r = out.data[0].numpy()
    out_img_r *= 255.0
    out_img_r = out_img_r.clip(0, 255)
    out_img_r = Image.fromarray(np.uint8(out_img_r[0]), mode='L')
    
    out_img_r.save('/content/drive/My Drive/app/EDSR_medical/path/test_r_1024_edsr_50.tif')
    
    out_img_g = all_black
    out_img_b = all_black
    out_img = Image.merge('RGB', [out_img_r, out_img_g, out_img_b]).convert('RGB')
    #out_img = out_img_r
    out_img.save(args.output_filename)
    print('output image saved to ', args.output_filename)
  • 相关阅读:
    topshelf和quartz
    Dapper的使用
    多快好省的做个app开发
    端口扫描之王——nmap入门精讲(转)
    你对自己的定位是什么,就能成为什么样的人(转)
    2015工作总结及2016展望
    使用php+swoole对client数据实时更新(二) (转)
    解决一bug的流程复盘
    JSONObject与JSONArray的使用
    GDB十分钟教程
  • 原文地址:https://www.cnblogs.com/zgqcn/p/11204351.html
Copyright © 2011-2022 走看看