Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example 1:
Input: 2
Output: [0,1,1]
Example 2:
Input: 5
Output: [0,1,1,2,1,2]
Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language.
public int[] countBits(int num) {//位运算 my int[] res = new int[num+1]; for (int i = 0; i <=num ; i++) { res[i]=0; int n = i; while (0!=n){ n= n&(n-1); res[i]++; } } return res; }
时间复杂度O(n),找规律
public int[] countBits(int num) {// O(n) my int[] res = new int[num+1]; res[0]=0; int flag = 1; int j=0; if(num>0){ res[1]=1; } for (int i = 2; i <=num ; i++) { if(i==2*flag){ flag=flag*2; j=0; } res[i]=res[j]+1; j++; } return res; }
简洁版
f[i] = f[i / 2] + i % 2
public int[] countBits(int num) { int[] f = new int[num + 1]; for (int i=1; i<=num; i++) f[i] = f[i >> 1] + (i & 1); return f; }
f[i]=f[i&(i-1)]+1
public int[] countBits(int num) {//位运算 mytip int[] f = new int[num+1]; for(int i=1;i<=num;i++){ f[i]= f[i&(i-1)]+1; } return f; }
相关题
2的幂次方 LeetCode231 https://www.cnblogs.com/zhacai/p/10631995.html
二进制中1的个数 LeetCode191 https://www.cnblogs.com/zhacai/p/10631928.html