zoukankan      html  css  js  c++  java
  • hihocoder-1497-Queen Attack

    hihocoder-1497-Queen Attack

    #1497 : Queen Attack

    时间限制:10000ms
    单点时限:1000ms
    内存限制:256MB

    描述

    There are N queens in an infinite chessboard. We say two queens may attack each other if they are in the same vertical line, horizontal line or diagonal line even if there are other queens sitting between them.

    Now given the positions of the queens, find out how many pairs may attack each other?

    输入

    The first line contains an integer N.

    Then N lines follow. Each line contains 2 integers Ri and Ci indicating there is a queen in the Ri-th row and Ci-th column.  

    No two queens share the same position.  

    For 80% of the data, 1 <= N <= 1000

    For 100% of the data, 1 <= N <= 100000, 0 <= Ri, Ci <= 1000000000

    输出

    One integer, the number of pairs may attack each other.

    样例输入
    5  
    1 1  
    2 2  
    3 3   
    1 3
    3 1
    样例输出
    10

    题解:

      使用unordered_map, 记录之前添加过的position,因为不可能同时两个position重叠,两两attack的position必定只存在着一种相交方式。

    #include <cstdio> 
    #include <cstdlib> 
    
    #include <iostream>
    #include <unordered_map> 
    using namespace std;  
    
    int main()
    {
        int n, x, y;
        long long ans = 0; 
        scanf("%d", &n); 
        unordered_map<int, int> hor; 
        unordered_map<int, int> vet; 
        unordered_map<int, int> dx; 
        unordered_map<int, int> vdx; 
        for(int i=0; i<n; ++i)
        {
            scanf("%d %d", &x, &y); 
            if(hor.find(x) != hor.end())
            {
                ans += hor[x]; 
                hor[x] += 1; 
            }else{
                hor[x] = 1; 
            }
    
            if(vet.find(y) != vet.end())
            {
                ans += vet[y]; 
                vet[y] += 1; 
            }else{
                vet[y] = 1; 
            }
    
            if(dx.find(x-y) != dx.end())
            {
                ans += dx[x-y]; 
                dx[x-y] += 1; 
            }else{
                dx[x-y] = 1; 
            }
    
            if(vdx.find(x+y) != vdx.end())
            {
                ans += vdx[x+y]; 
                vdx[x+y] += 1; 
            }else{
                vdx[x+y] = 1; 
            }
    
        }
        printf("%lld
    ", ans );
    }
    

      

  • 相关阅读:
    Win10下 Docker Flask实例
    4.1 线性映射的概念
    桥梁的基本组成和分类
    Qt5字符串编码转换学习
    在右键菜单中添加用Jupyter Notebook打开
    左右手(直角)坐标系叉乘计算公式
    __new__方法与单键实例
    向量组的秩
    从线性组合的角度理解三维运算
    Hexo使用小结
  • 原文地址:https://www.cnblogs.com/zhang-yd/p/11022811.html
Copyright © 2011-2022 走看看