zoukankan      html  css  js  c++  java
  • poj-3264-Balanced Lineup

    poj   3264  Balanced Lineup

    link: http://poj.org/problem?id=3264

                                        Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 48747   Accepted: 22833
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    题解:

    快速找到一个区间[a, b] 之间的最大值和最小值的差;

    经典的RMQ问题。 利用Sparse Table算法, 动态规划求解。 

    #include <iostream> 
    #include <cstdio> 
    #include <cstring> 
    #include <algorithm>
    #include <cmath> 
    using namespace std; 
    const int maxn = 50005; 
    
    int n, m,  num[maxn], dp1[maxn][18], dp2[maxn][18]; 
    
    void BuildIndex(){
    	for(int i=0; i<n;++i){
    		dp1[i][0] = i; 
    		dp2[i][0] = i; 
    	} 
    	for(int i=1; (1<<i)<=n; ++i){
    		for(int j=0; j+(1<<i)-1<n; ++j){
    			// find max 
    			if(num[dp1[j][i-1]] > num[dp1[j+(1<<(i-1))][i-1]]){
    				dp1[j][i] = dp1[j][i-1]; 
    			}else{
    				dp1[j][i] = dp1[j+(1<<(i-1))][i-1]; 
    			}
    
    			// find min
    			if(num[dp2[j][i-1]] < num[dp2[j+(1<<(i-1))][i-1]]){
    				dp2[j][i] = dp2[j][i-1]; 
    			}else{
    				dp2[j][i] = dp2[j+(1<<(i-1))][i-1]; 
    			}
    		}
    	}
    }
    
    int FindMaxIndex(int start, int end){
    	int k = (int)((log((end - start + 1)*1.0))/log(2.0)); 
    	if(num[dp1[start][k]] > num[dp1[end-(1<<k)+1][k]]){
    		return dp1[start][k]; 
    	}else{
    		return dp1[end-(1<<k)+1][k]; 
    	}
    }
    int FindMinIndex(int start, int end){
    	int k = (int)((log((end - start + 1)*1.0))/log(2.0)); 
    	if(num[dp2[start][k]] > num[dp2[end-(1<<k)+1][k]]){
    		return dp2[end-(1<<k)+1][k]; 
    	}else{
    		return dp2[start][k]; 
    	}
    }
    
    int main(){
    	freopen("in.txt", "r", stdin); 
    
    	int ans1, ans2, x, y; 
    	while(scanf("%d %d", &n, &m) != EOF){
    		for(int i=0; i<n; ++i){
    			scanf("%d", &num[i]); 
    		}
    		BuildIndex(); 
    		while(m--){
    			scanf("%d %d", &x, &y); 
    			if(x > y){ swap(x, y); } 
    			ans1 = FindMinIndex(x-1, y-1); 
    			ans2 = FindMaxIndex(x-1, y-1); 
    			printf("%d
    ", (num[ans2] - num[ans1]) );
    		}
    	}
    	return 0; 
    }
    

      

  • 相关阅读:
    python 迭代器
    python 语言特性
    JavaScript 【语句】for-in语句
    Vue实例-创建第一个VUE应用
    【安装】Vue( 直接使用<script>方式引入、CDN方式引入 )
    到某个目录下新建文件
    NVM 安装( Windows)
    尾调用
    JavaScript 【函数表达式】私有变量
    JavaScript 【函数表达式】模仿块级作用域
  • 原文地址:https://www.cnblogs.com/zhang-yd/p/6011270.html
Copyright © 2011-2022 走看看