zoukankan      html  css  js  c++  java
  • poj-3264-Balanced Lineup

    poj   3264  Balanced Lineup

    link: http://poj.org/problem?id=3264

                                        Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 48747   Accepted: 22833
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    题解:

    快速找到一个区间[a, b] 之间的最大值和最小值的差;

    经典的RMQ问题。 利用Sparse Table算法, 动态规划求解。 

    #include <iostream> 
    #include <cstdio> 
    #include <cstring> 
    #include <algorithm>
    #include <cmath> 
    using namespace std; 
    const int maxn = 50005; 
    
    int n, m,  num[maxn], dp1[maxn][18], dp2[maxn][18]; 
    
    void BuildIndex(){
    	for(int i=0; i<n;++i){
    		dp1[i][0] = i; 
    		dp2[i][0] = i; 
    	} 
    	for(int i=1; (1<<i)<=n; ++i){
    		for(int j=0; j+(1<<i)-1<n; ++j){
    			// find max 
    			if(num[dp1[j][i-1]] > num[dp1[j+(1<<(i-1))][i-1]]){
    				dp1[j][i] = dp1[j][i-1]; 
    			}else{
    				dp1[j][i] = dp1[j+(1<<(i-1))][i-1]; 
    			}
    
    			// find min
    			if(num[dp2[j][i-1]] < num[dp2[j+(1<<(i-1))][i-1]]){
    				dp2[j][i] = dp2[j][i-1]; 
    			}else{
    				dp2[j][i] = dp2[j+(1<<(i-1))][i-1]; 
    			}
    		}
    	}
    }
    
    int FindMaxIndex(int start, int end){
    	int k = (int)((log((end - start + 1)*1.0))/log(2.0)); 
    	if(num[dp1[start][k]] > num[dp1[end-(1<<k)+1][k]]){
    		return dp1[start][k]; 
    	}else{
    		return dp1[end-(1<<k)+1][k]; 
    	}
    }
    int FindMinIndex(int start, int end){
    	int k = (int)((log((end - start + 1)*1.0))/log(2.0)); 
    	if(num[dp2[start][k]] > num[dp2[end-(1<<k)+1][k]]){
    		return dp2[end-(1<<k)+1][k]; 
    	}else{
    		return dp2[start][k]; 
    	}
    }
    
    int main(){
    	freopen("in.txt", "r", stdin); 
    
    	int ans1, ans2, x, y; 
    	while(scanf("%d %d", &n, &m) != EOF){
    		for(int i=0; i<n; ++i){
    			scanf("%d", &num[i]); 
    		}
    		BuildIndex(); 
    		while(m--){
    			scanf("%d %d", &x, &y); 
    			if(x > y){ swap(x, y); } 
    			ans1 = FindMinIndex(x-1, y-1); 
    			ans2 = FindMaxIndex(x-1, y-1); 
    			printf("%d
    ", (num[ans2] - num[ans1]) );
    		}
    	}
    	return 0; 
    }
    

      

  • 相关阅读:
    Linux入门实践笔记(二)——Jar包的运行与关闭
    SpringCloud从入门到进阶(二)——注册中心Eureka的伪分布式部署
    Linux入门实践笔记(一)——安装JDK与运行jar包
    探究ConcurrentHashMap中键值对在Segment[]的下标如何确定
    探究HashMap线性不安全(三)——死循环的产生
    jmeter集成测试报告
    jmeter+ant+jenkins持续集成设置
    jmeter-环境配置与安装
    MySql 基本语法_数据表操作
    MySql 基本语法_数据库操作
  • 原文地址:https://www.cnblogs.com/zhang-yd/p/6011270.html
Copyright © 2011-2022 走看看