zoukankan      html  css  js  c++  java
  • poj-3264-Balanced Lineup

    poj   3264  Balanced Lineup

    link: http://poj.org/problem?id=3264

                                        Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 48747   Accepted: 22833
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    题解:

    快速找到一个区间[a, b] 之间的最大值和最小值的差;

    经典的RMQ问题。 利用Sparse Table算法, 动态规划求解。 

    #include <iostream> 
    #include <cstdio> 
    #include <cstring> 
    #include <algorithm>
    #include <cmath> 
    using namespace std; 
    const int maxn = 50005; 
    
    int n, m,  num[maxn], dp1[maxn][18], dp2[maxn][18]; 
    
    void BuildIndex(){
    	for(int i=0; i<n;++i){
    		dp1[i][0] = i; 
    		dp2[i][0] = i; 
    	} 
    	for(int i=1; (1<<i)<=n; ++i){
    		for(int j=0; j+(1<<i)-1<n; ++j){
    			// find max 
    			if(num[dp1[j][i-1]] > num[dp1[j+(1<<(i-1))][i-1]]){
    				dp1[j][i] = dp1[j][i-1]; 
    			}else{
    				dp1[j][i] = dp1[j+(1<<(i-1))][i-1]; 
    			}
    
    			// find min
    			if(num[dp2[j][i-1]] < num[dp2[j+(1<<(i-1))][i-1]]){
    				dp2[j][i] = dp2[j][i-1]; 
    			}else{
    				dp2[j][i] = dp2[j+(1<<(i-1))][i-1]; 
    			}
    		}
    	}
    }
    
    int FindMaxIndex(int start, int end){
    	int k = (int)((log((end - start + 1)*1.0))/log(2.0)); 
    	if(num[dp1[start][k]] > num[dp1[end-(1<<k)+1][k]]){
    		return dp1[start][k]; 
    	}else{
    		return dp1[end-(1<<k)+1][k]; 
    	}
    }
    int FindMinIndex(int start, int end){
    	int k = (int)((log((end - start + 1)*1.0))/log(2.0)); 
    	if(num[dp2[start][k]] > num[dp2[end-(1<<k)+1][k]]){
    		return dp2[end-(1<<k)+1][k]; 
    	}else{
    		return dp2[start][k]; 
    	}
    }
    
    int main(){
    	freopen("in.txt", "r", stdin); 
    
    	int ans1, ans2, x, y; 
    	while(scanf("%d %d", &n, &m) != EOF){
    		for(int i=0; i<n; ++i){
    			scanf("%d", &num[i]); 
    		}
    		BuildIndex(); 
    		while(m--){
    			scanf("%d %d", &x, &y); 
    			if(x > y){ swap(x, y); } 
    			ans1 = FindMinIndex(x-1, y-1); 
    			ans2 = FindMaxIndex(x-1, y-1); 
    			printf("%d
    ", (num[ans2] - num[ans1]) );
    		}
    	}
    	return 0; 
    }
    

      

  • 相关阅读:
    Oracle 创建索引分区
    Shiro SessionManager会话管理器设计概念
    管理表分区
    Oracle 表分区策略
    Oracle 表分区
    参考Shiro的Session定期验证会话失效的线程池
    HDU 3555 Bomb (数位dp)
    POJ 3666 Making the Grade (动态规划)
    Gym
    POJ
  • 原文地址:https://www.cnblogs.com/zhang-yd/p/6011270.html
Copyright © 2011-2022 走看看