zoukankan      html  css  js  c++  java
  • 函数(四)--三元表达式、列表推导式、生成器表达式、递归、匿名函数、内置函数

    一 、三元表达式、列表推导式、生成器表达式

    1、 三元表达式

    name=input('姓名>>: ')
    res='SB' if name == 'alex' else 'NB'
    print(res)

    2、列表推导式

    #1、示例
    egg_list=[]
    for i in range(10):
        egg_list.append('鸡蛋%s' %i)
    
    egg_list=['鸡蛋%s' %i for i in range(10)]
    
    #2、语法
    [expression for item1 in iterable1 if condition1
    for item2 in iterable2 if condition2
    ...
    for itemN in iterableN if conditionN
    ]
    类似于
    res=[]
    for item1 in iterable1:
        if condition1:
            for item2 in iterable2:
                if condition2
                    ...
                    for itemN in iterableN:
                        if conditionN:
                            res.append(expression)
    
    #3、优点:方便,改变了编程习惯,可称之为声明式编程

    3、生成器表达式

    #1、把列表推导式的[]换成()就是生成器表达式
    
    #2、示例:生一筐鸡蛋变成给你一只老母鸡,用的时候就下蛋,这也是生成器的特性
    >>> chicken=('鸡蛋%s' %i for i in range(5))
    >>> chicken
    <generator object <genexpr> at 0x10143f200>
    >>> next(chicken)
    '鸡蛋0'
    >>> list(chicken) #因chicken可迭代,因而可以转成列表
    ['鸡蛋1', '鸡蛋2', '鸡蛋3', '鸡蛋4',]
    
    #3、优点:省内存,一次只产生一个值在内存中

    4、声明式编程练习题

    1、将names=['pie','jqh_sb','zhoudong','yanzhe']中的名字全部变大写
    
    2、将names=['pie','jqh_sb','zhoudong','yanzhe']中以sb结尾的名字过滤掉,然后保存剩下的名字长度
    
    3、求文件a.txt中最长的行的长度(长度按字符个数算,需要使用max函数)
    
    4、求文件a.txt中总共包含的字符个数?思考为何在第一次之后的n次sum求和得到的结果为0?(需要使用sum函数)
    
    5、文件shopping.txt内容如下
    mac,15000,3
    iphoneXs,9599,10
    iPad,6499,10
    Watch,3100,1
    
    求总共花了多少钱?
    
    打印出所有商品的信息,格式为[{'name':'xxx','price':333,'count':3},...]
    
    求单价大于10000的商品信息,格式同上
    题目
    #题目一
    names=['pie','jqh_sb','zhoudong','yanzhe']
    names=[name.upper() for name in names]
    
    #题目二
    names=['pie','jqh_sb','zhoudong','yanzhe']
    names=[len(name) for name in names if not name.endswith('sb')]
    
    #题目三
    with open('a.txt',encoding='utf-8') as f:
        print(max(len(line) for line in f))
    
    #题目四
    with open('a.txt', encoding='utf-8') as f:
        print(sum(len(line) for line in f))
        print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?
        print(sum(len(line) for line in f)) #求包换换行符在内的文件所有的字符数,为何得到的值为0?
    
    #题目五:每次必须重新打开文件或seek到文件开头,因为迭代完一次就结束了
    with open('a.txt',encoding='utf-8') as f:
        info=[line.split() for line in f]
        cost=sum(float(unit_price)*int(count) for _,unit_price,count in info)
        print(cost)
    
    
    with open('a.txt',encoding='utf-8') as f:
        info=[{
            'name': line.split()[0],
            'price': float(line.split()[1]),
            'count': int(line.split()[2]),
        } for line in f]
        print(info)
    
    
    with open('a.txt',encoding='utf-8') as f:
        info=[{
            'name': line.split()[0],
            'price': float(line.split()[1]),
            'count': int(line.split()[2]),
        } for line in f if float(line.split()[1]) > 10000]
        print(info)
    View Code

    二 、递归与二分法

    1、递归调用的定义

    #递归调用是函数嵌套调用的一种特殊形式,函数在调用时,直接或间接调用了自身,就是递归调用
    #直接调用本身
    def f1():
        print('from f1')
        f1()
    f1()
    
    #间接调用本身
    def f1():
        print('from f1')
        f2()
    
    def f2():
        print('from f2')
        f1()
    f1()
    
    # 调用函数会产生局部的名称空间,占用内存,因为上述这种调用会无需调用本身,python解释器的内存管理机制为了防止其无限制占用内存,对函数的递归调用做了最大的层级限制
    四 可以修改递归最大深度
    
    import sys
    sys.getrecursionlimit()
    sys.setrecursionlimit(2000)
    
    def f1(n):
        print('from f1',n)
        f1(n+1)
    f1(1)
    
    虽然可以设置,但是因为不是尾递归,仍然要保存栈,内存大小一定,不可能无限递归,而且无限制地递归调用本身是毫无意义的,递归应该分为两个明确的阶段,回溯与递推
    示例

    2、递归调用应该分为两个明确的阶段:递推,回溯 

    递归调用应该包含两个明确的阶段:回溯,递推
    
    • 回溯就是从外向里一层一层递归调用下去,回溯阶段必须要有一个明确地结束条件,每进入下一次递归时,问题的规模都应该有所减少(否则,单纯地重复调用自身是毫无意义的)
    • 递推就是从里向外一层一层结束递归
    # salary(5)=salary(4)+300
    # salary(4)=salary(3)+300
    # salary(3)=salary(2)+300
    # salary(2)=salary(1)+300
    # salary(1)=100
    #
    # salary(n)=salary(n-1)+300     n>1
    # salary(1) =100                n=1
    
    def salary(n):
        if n == 1:
            return 100
        return salary(n-1)+300
    
    print(salary(5)) 
    示例

    3、python中的递归效率低且没有尾递归优化

    #python中的递归
    python中的递归效率低,需要在进入下一次递归时保留当前的状态,在其他语言中可以有解决方法:尾递归优化,即在函数的最后一步(而非最后一行)调用自己,
    尾递归优化:http://egon09.blog.51cto.com/9161406/1842475 但是python又没有尾递归,且对递归层级做了限制 #总结递归的使用: 1. 必须有一个明确的结束条件 2. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少 3. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,
    每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

    4、二分法

    想从一个按照从小到大排列的数字列表中找到指定的数字,遍历的效率太低,用二分法(算法的一种,算法是解决问题的方法)可以极大低缩小问题规模

    l=[1,2,10,30,33,99,101,200,301,311,402,403,500,900,1000] #从小到大排列的数字列表
    
    def search(n,l):
        print(l)
        if len(l) == 0:
            print('not exists')
            return
        mid_index=len(l) // 2
        if n > l[mid_index]:
            #in the right
            l=l[mid_index+1:]
            search(n,l)
        elif n < l[mid_index]:
            #in the left
            l=l[:mid_index]
            search(n,l)
        else:
            print('find it')
    
    
    search(3,l)
    实现类似于in的效果
    l=[1,2,10,30,33,99,101,200,301,402]
    
    def search(num,l,start=0,stop=len(l)-1):
        if start <= stop:
            mid=start+(stop-start)//2
            print('start:[%s] stop:[%s] mid:[%s] mid_val:[%s]' %(start,stop,mid,l[mid]))
            if num > l[mid]:
                start=mid+1
            elif num < l[mid]:
                stop=mid-1
            else:
                print('find it',mid)
                return
            search(num,l,start,stop)
        else: #如果stop > start则意味着列表实际上已经全部切完,即切为空
            print('not exists')
            return
    
    search(301,l)
    实现类似于l.index(30)的效果

    三、 匿名函数

    1、什么是匿名函数?

    匿名就是没有名字
    def func(x,y,z=1):
        return x+y+z
        print(func(1,2))
    
    匿名
    lambda x,y,z=1:x+y+z #与函数有相同的作用域,但是匿名意味着引用计数为0,使用一次就释放,除非让其有名字
    func=lambda x,y,z=1:x+y+z 
    func(1,2,3)
    #让其有名字就没有意义

    2、有名字的函数与匿名函数的对比

    #有名函数与匿名函数的对比
    有名函数:循环使用,保存了名字,通过名字就可以重复引用函数功能
    
    匿名函数:一次性使用,随时随时定义
    
    应用:max,min,sorted,map,reduce,filter
    # map:把一个列表按照我们自定义的映射规则映射成一个新的列表
    # names=['alex','lxx','wxx','yxx']
    # res=map(lambda name: name + "dSB", names)
    # print(list(res))
    
    # filter: 从一个列表中过滤出符合我们过滤规则的值
    # 运行原理:相当于for循环取出每一个人名,然后传给匿名函数,将调用匿名函数返回值为True的那个人名给留下来
    # names=['alex_sb','lxx_sb','wxx_sb','egon','yxx']
    
    # res=filter(lambda name:name.endswith('sb'),names)
    # print(list(res))
    
    # print([name for name in names if name.endswith('sb')])
    
    # reduce: 把多个值合并成一个结果
    from functools import reduce
    l=['a','b','c','d']
    
    # res=reduce(lambda x,y:x+y,l,'A')
    #'A','a' => 'Aa'
    #'Aa','b'=>'Aab'
    #'Aab','c'=>'Aabc'
    #'Aabc','d'=>'Aabcd'
    # print(res)
    
    
    # res=reduce(lambda x,y:x+y,l)
    #'a','b'=>'ab'
    # print(res)
    
    # res=reduce(lambda x,y:x+y,range(1,101))
    #1,2=>3
    #3,3=>6
    # print(res)
    map、filter、reduce

    四 、内置函数

    #注意:内置函数id()可以返回一个对象的身份,返回值为整数。这个整数通常对应与该对象在内存中的位置,但这与python的具体实现有关,不应该作为对身份的定义,
    即不够精准,最精准的还是以内存地址为准。is运算符用于比较两个对象的身份,等号比较两个对象的值,内置函数type()则返回一个对象的类型
    #更多内置函数:https://docs.python.org/3/library/functions.html?highlight=built#ascii

    #字符串可以提供的参数 's' None
    >>> format('some string','s')
    'some string'
    >>> format('some string')
    'some string'
    
    #整形数值可以提供的参数有 'b' 'c' 'd' 'o' 'x' 'X' 'n' None
    >>> format(3,'b') #转换成二进制
    '11'
    >>> format(97,'c') #转换unicode成字符
    'a'
    >>> format(11,'d') #转换成10进制
    '11'
    >>> format(11,'o') #转换成8进制
    '13'
    >>> format(11,'x') #转换成16进制 小写字母表示
    'b'
    >>> format(11,'X') #转换成16进制 大写字母表示
    'B'
    >>> format(11,'n') #和d一样
    '11'
    >>> format(11) #默认和d一样
    '11'
    
    #浮点数可以提供的参数有 'e' 'E' 'f' 'F' 'g' 'G' 'n' '%' None
    >>> format(314159267,'e') #科学计数法,默认保留6位小数
    '3.141593e+08'
    >>> format(314159267,'0.2e') #科学计数法,指定保留2位小数
    '3.14e+08'
    >>> format(314159267,'0.2E') #科学计数法,指定保留2位小数,采用大写E表示
    '3.14E+08'
    >>> format(314159267,'f') #小数点计数法,默认保留6位小数
    '314159267.000000'
    >>> format(3.14159267000,'f') #小数点计数法,默认保留6位小数
    '3.141593'
    >>> format(3.14159267000,'0.8f') #小数点计数法,指定保留8位小数
    '3.14159267'
    >>> format(3.14159267000,'0.10f') #小数点计数法,指定保留10位小数
    '3.1415926700'
    >>> format(3.14e+1000000,'F')  #小数点计数法,无穷大转换成大小字母
    'INF'
    
    #g的格式化比较特殊,假设p为格式中指定的保留小数位数,先尝试采用科学计数法格式化,得到幂指数exp,如果-4<=exp<p,则采用小数计数法,并保留p-1-exp位小数,否则按小数计数法计数,并按p-1保留小数位数
    >>> format(0.00003141566,'.1g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点
    '3e-05'
    >>> format(0.00003141566,'.2g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留1位小数点
    '3.1e-05'
    >>> format(0.00003141566,'.3g') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留2位小数点
    '3.14e-05'
    >>> format(0.00003141566,'.3G') #p=1,exp=-5 ==》 -4<=exp<p不成立,按科学计数法计数,保留0位小数点,E使用大写
    '3.14E-05'
    >>> format(3.1415926777,'.1g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留0位小数点
    '3'
    >>> format(3.1415926777,'.2g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留1位小数点
    '3.1'
    >>> format(3.1415926777,'.3g') #p=1,exp=0 ==》 -4<=exp<p成立,按小数计数法计数,保留2位小数点
    '3.14'
    >>> format(0.00003141566,'.1n') #和g相同
    '3e-05'
    >>> format(0.00003141566,'.3n') #和g相同
    '3.14e-05'
    >>> format(0.00003141566) #和g相同
    '3.141566e-05'
    
    format(了解即可)
    format(了解即可)
    字典的运算:最小值,最大值,排序
    salaries={
        'pie':3000,
        'jqh':100000000,
        'yanzhe':10000,
        'zhoudong':2000
    }
    
    迭代字典,取得是key,因而比较的是key的最大和最小值
    >>> max(salaries)
    'zhoudong'
    >>> min(salaries)
    'jqh'
    
    可以取values,来比较
    >>> max(salaries.values())
    >>> min(salaries.values())
    但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
    >>> max(salaries,key=lambda k:salary[k])
    'jqh'
    >>> min(salaries,key=lambda k:salary[k])
    'zhoudong'
    
    
    
    也可以通过zip的方式实现
    salaries_and_names=zip(salaries.values(),salaries.keys())
    
    先比较值,值相同则比较键
    >>> max(salaries_and_names)
    (100000000, 'jqh')
    
    
    salaries_and_names是迭代器,因而只能访问一次
    >>> min(salaries_and_names)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: min() arg is an empty sequence
    
    
    
    sorted(iterable,key=None,reverse=False)
    lambda与内置函数结合使用
    #1、语法
    # eval(str,[,globasl[,locals]])
    # exec(str,[,globasl[,locals]])
    
    #2、区别
    #示例一:
    s='1+2+3'
    print(eval(s)) #eval用来执行表达式,并返回表达式执行的结果
    print(exec(s)) #exec用来执行语句,不会返回任何值
    '''
    6
    None
    '''
    
    #示例二:
    print(eval('1+2+x',{'x':3},{'x':30})) #返回33
    print(exec('1+2+x',{'x':3},{'x':30})) #返回None
    
    # print(eval('for i in range(10):print(i)')) #语法错误,eval不能执行表达式
    print(exec('for i in range(10):print(i)'))
    eval与exec
    compile(str,filename,kind)
    filename:用于追踪str来自于哪个文件,如果不想追踪就可以不定义
    kind可以是:single代表一条语句,exec代表一组语句,eval代表一个表达式
    s='for i in range(10):print(i)'
    code=compile(s,'','exec')
    exec(code)
    
    
    s='1+2+3'
    code=compile(s,'','eval')
    eval(code)
    了解complie
  • 相关阅读:
    整个过程
    iframe 重新加载闪过白块问题
    C# 获得两日期之间所有月份(包括跨年)
    新手是个框,啥都往里装!---谨以此文致歉博友和自己的无知
    C# 和Java的foreach的不同用法
    终于鼓起勇气,辞掉了第一份工作
    Java Junit4测试功能
    自学Android的第一个小程序(小布局、button点击事件、toast弹出)
    JS--Div中数据滚动到最后一条重新从头开始滚动
    RelativeLayout与LinearLayout的区别
  • 原文地址:https://www.cnblogs.com/zhangbingsheng/p/10110545.html
Copyright © 2011-2022 走看看