zoukankan      html  css  js  c++  java
  • tfserving 调用deepfm 并预测 java 【参考】

    https://blog.csdn.net/luoyexuge/article/details/79941565?utm_source=blogxgwz8

    首先是libsvm格式数据生成java代码,我用数字特征为5个,字符特征为3个,one-hot之后总计为39个特征:
    
    
    package com.meituan.test;
     
    import java.io.BufferedWriter;
    import java.io.FileOutputStream;
    import java.io.IOException;
    import java.io.OutputStreamWriter;
    import java.util.Random;
     
     
    public class LibSvmUtils {
    	public final static String TrainPATH = "click/train.txt";
    	public final static String TestPATH = "click/test.txt";
    	public final static String VAPATH = "click/va.txt";
     
     
    	public static void main(String[] args) throws IOException {
    		genatartelibsvm(TrainPATH, 20000);
    		genatartelibsvm(TestPATH, 2000);
    		genatartelibsvm(VAPATH, 200);
     
     
    	}
     
    	public static void genatartelibsvm(String trainpath, int count) throws IOException {
    		StringBuffer sb = null;
    		Random random = new Random();
    		BufferedWriter bf = new BufferedWriter(new OutputStreamWriter(
    				new FileOutputStream(trainpath)));
    		/**
    		 * 
    		 * 总共field是8个,其中数值是5个,分类形状是3个,总估计特征39个
    		 * **/
    		for (int i = 0; i < count; i++) {
    			sb = new StringBuffer();
    			int featureidx=1;
     
    			/**
    			 * 产生label
    			 * */
    			sb.append(random.nextInt(2)).append(" ");
     
    			/**
    			 * 产生数字特征 5个
    			 * */
     
    			for (int j = 0; j < 5; j++) {
    				sb.append(featureidx+":"+Math.random()).append(" ");
    				featureidx+=1;
    			}
    			/**
    			 * 字符特征 5个, 此时featureidx等于6,从6开始算
    			 * */
    			int featureidxa=featureidx;
    			sb.append(featureidxa+random.nextInt(18)+":1").append(" ");
    			
    			/**
    			 * 前面已经有23个,特征这一步从24算起,6+18 
    			 * */
    			int featureidxb=featureidx+18;
    			sb.append(featureidxb + random.nextInt(10)+":1").append(" ");
    			
    			/**
    			 * 前面已经有33个,特征这一步从34算起,总共估计39个特征
    			 * */
    			int featureidxc=featureidx+18+10;
     
    			sb.append(featureidxc+ random.nextInt(5)+":1").append("
    ");
     
    			bf.write(sb.toString());
    		}
    		bf.close();
    	}
     
    }
    

      

    tensorflow的模型代码:

    """
    #1 Input pipline using Dataset high level API, Support parallel and prefetch reading
    #2 Train pipline using Coustom Estimator by rewriting model_fn
    #3 Support distincted training using TF_CONFIG
    #4 Support export_model for TensorFlow Serving
    方便迁移到其他算法上,只要修改input_fn and model_fn
    by lambdaji
    """
    #from __future__ import absolute_import
    #from __future__ import division
    #from __future__ import print_function
     
    #import argparse
    import shutil
    #import sys
    import os
    import json
    import glob
    from datetime import date, timedelta
    from time import time
    #import gc
    #from multiprocessing import Process
     
    #import math
    import random
    import pandas as pd
    import numpy as np
    import tensorflow as tf
     
    #################### CMD Arguments ####################
    FLAGS = tf.app.flags.FLAGS
    tf.app.flags.DEFINE_integer("dist_mode", 0, "distribuion mode {0-loacal, 1-single_dist, 2-multi_dist}")
    tf.app.flags.DEFINE_string("ps_hosts", '', "Comma-separated list of hostname:port pairs")
    tf.app.flags.DEFINE_string("worker_hosts", '', "Comma-separated list of hostname:port pairs")
    tf.app.flags.DEFINE_string("job_name", '', "One of 'ps', 'worker'")
    tf.app.flags.DEFINE_integer("task_index", 0, "Index of task within the job")
    tf.app.flags.DEFINE_integer("num_threads", 16, "Number of threads")
    tf.app.flags.DEFINE_integer("feature_size", 0, "Number of features")
    tf.app.flags.DEFINE_integer("field_size", 0, "Number of fields")
    tf.app.flags.DEFINE_integer("embedding_size", 32, "Embedding size")
    tf.app.flags.DEFINE_integer("num_epochs", 10, "Number of epochs")
    tf.app.flags.DEFINE_integer("batch_size", 64, "Number of batch size")
    tf.app.flags.DEFINE_integer("log_steps", 1000, "save summary every steps")
    tf.app.flags.DEFINE_float("learning_rate", 0.0005, "learning rate")
    tf.app.flags.DEFINE_float("l2_reg", 0.0001, "L2 regularization")
    tf.app.flags.DEFINE_string("loss_type", 'log_loss', "loss type {square_loss, log_loss}")
    tf.app.flags.DEFINE_string("optimizer", 'Adam', "optimizer type {Adam, Adagrad, GD, Momentum}")
    tf.app.flags.DEFINE_string("deep_layers", '256,128,64', "deep layers")
    tf.app.flags.DEFINE_string("dropout", '0.5,0.5,0.5', "dropout rate")
    tf.app.flags.DEFINE_boolean("batch_norm", False, "perform batch normaization (True or False)")
    tf.app.flags.DEFINE_float("batch_norm_decay", 0.9, "decay for the moving average(recommend trying decay=0.9)")
    tf.app.flags.DEFINE_string("data_dir", '', "data dir")
    tf.app.flags.DEFINE_string("dt_dir", '', "data dt partition")
    tf.app.flags.DEFINE_string("model_dir", 'tensorflow/', "model check point dir")
    tf.app.flags.DEFINE_string("servable_model_dir", 'servermodel/', "export servable model for TensorFlow Serving")
    tf.app.flags.DEFINE_string("task_type", 'train', "task type {train, infer, eval, export}")
    tf.app.flags.DEFINE_boolean("clear_existing_model", False, "clear existing model or not")
     
    #1 1:0.5 2:0.03519 3:1 4:0.02567 7:0.03708 8:0.01705 9:0.06296 10:0.18185 11:0.02497 12:1 14:0.02565 15:0.03267 17:0.0247 18:0.03158 20:1 22:1 23:0.13169 24:0.02933 27:0.18159 31:0.0177 34:0.02888 38:1 51:1 63:1 132:1 164:1 236:1
    def input_fn(filenames, batch_size=32, num_epochs=1, perform_shuffle=False):
        print('Parsing', filenames)
        def decode_libsvm(line):
            #columns = tf.decode_csv(value, record_defaults=CSV_COLUMN_DEFAULTS)
            #features = dict(zip(CSV_COLUMNS, columns))
            #labels = features.pop(LABEL_COLUMN)
            columns = tf.string_split([line], ' ')
            labels = tf.string_to_number(columns.values[0], out_type=tf.float32)
            splits = tf.string_split(columns.values[1:], ':')
            id_vals = tf.reshape(splits.values,splits.dense_shape)
            feat_ids, feat_vals = tf.split(id_vals,num_or_size_splits=2,axis=1)
            feat_ids = tf.string_to_number(feat_ids, out_type=tf.int32)
            feat_vals = tf.string_to_number(feat_vals, out_type=tf.float32)
            return {"feat_ids": feat_ids, "feat_vals": feat_vals}, labels
        dataset = tf.data.TextLineDataset(filenames).map(decode_libsvm, num_parallel_calls=10).prefetch(500000)
        if perform_shuffle:
            dataset = dataset.shuffle(buffer_size=256)
     
        # epochs from blending together.
        dataset = dataset.repeat(num_epochs)
        dataset = dataset.batch(batch_size) # Batch size to use
        iterator = dataset.make_one_shot_iterator()
        batch_features, batch_labels = iterator.get_next()
        #return tf.reshape(batch_ids,shape=[-1,field_size]), tf.reshape(batch_vals,shape=[-1,field_size]), batch_labels
        return batch_features, batch_labels
     
    def model_fn(features, labels, mode, params):
        """Bulid Model function f(x) for Estimator."""
        #------hyperparameters----
        field_size = params["field_size"]
        feature_size = params["feature_size"]
        embedding_size = params["embedding_size"]
        l2_reg = params["l2_reg"]
        learning_rate = params["learning_rate"]
        #batch_norm_decay = params["batch_norm_decay"]
        #optimizer = params["optimizer"]
        layers = list(map(int, params["deep_layers"].split(',')))
        dropout = list(map(float, params["dropout"].split(',')))
     
        #------bulid weights------
        FM_B = tf.get_variable(name='fm_bias', shape=[1], initializer=tf.constant_initializer(0.0))
        FM_W = tf.get_variable(name='fm_w', shape=[feature_size], initializer=tf.glorot_normal_initializer())
        FM_V = tf.get_variable(name='fm_v', shape=[feature_size, embedding_size], initializer=tf.glorot_normal_initializer())
     
        #------build feaure-------
        feat_ids  = features['feat_ids']
        feat_ids = tf.reshape(feat_ids,shape=[-1,field_size])
        feat_vals = features['feat_vals']
        feat_vals = tf.reshape(feat_vals,shape=[-1,field_size])
     
        #------build f(x)------
        with tf.variable_scope("First-order"):
            feat_wgts = tf.nn.embedding_lookup(FM_W, feat_ids) # None * F * 1
            y_w = tf.reduce_sum(tf.multiply(feat_wgts, feat_vals),1)
     
        with tf.variable_scope("Second-order"):
            embeddings = tf.nn.embedding_lookup(FM_V, feat_ids) # None * F * K
            feat_vals = tf.reshape(feat_vals, shape=[-1, field_size, 1])
            embeddings = tf.multiply(embeddings, feat_vals) #vij*xi
            sum_square = tf.square(tf.reduce_sum(embeddings,1))
            square_sum = tf.reduce_sum(tf.square(embeddings),1)
            y_v = 0.5*tf.reduce_sum(tf.subtract(sum_square, square_sum),1)	# None * 1
     
        with tf.variable_scope("Deep-part"):
            if FLAGS.batch_norm:
                #normalizer_fn = tf.contrib.layers.batch_norm
                #normalizer_fn = tf.layers.batch_normalization
                if mode == tf.estimator.ModeKeys.TRAIN:
                    train_phase = True
                    #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': True, 'reuse': None}
                else:
                    train_phase = False
                    #normalizer_params = {'decay': batch_norm_decay, 'center': True, 'scale': True, 'updates_collections': None, 'is_training': False, 'reuse': True}
            else:
                normalizer_fn = None
                normalizer_params = None
     
            deep_inputs = tf.reshape(embeddings,shape=[-1,field_size*embedding_size]) # None * (F*K)
            for i in range(len(layers)):
                #if FLAGS.batch_norm:
                #    deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i)
                    #normalizer_params.update({'scope': 'bn_%d' %i})
                deep_inputs = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=layers[i], 
                    #normalizer_fn=normalizer_fn, normalizer_params=normalizer_params, 
                    weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='mlp%d' % i)
                if FLAGS.batch_norm:
                    deep_inputs = batch_norm_layer(deep_inputs, train_phase=train_phase, scope_bn='bn_%d' %i)   #放在RELU之后 https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
                if mode == tf.estimator.ModeKeys.TRAIN:
                    deep_inputs = tf.nn.dropout(deep_inputs, keep_prob=dropout[i])                              #Apply Dropout after all BN layers and set dropout=0.8(drop_ratio=0.2)
                    #deep_inputs = tf.layers.dropout(inputs=deep_inputs, rate=dropout[i], training=mode == tf.estimator.ModeKeys.TRAIN)
     
            y_deep = tf.contrib.layers.fully_connected(inputs=deep_inputs, num_outputs=1, activation_fn=tf.identity, 
                    weights_regularizer=tf.contrib.layers.l2_regularizer(l2_reg), scope='deep_out')
            y_d = tf.reshape(y_deep,shape=[-1])
        with tf.variable_scope("DeepFM-out"):
            y_bias = FM_B * tf.ones_like(y_d, dtype=tf.float32)     # None * 1
            y = y_bias + y_w + y_v + y_d
            pred = tf.sigmoid(y)
     
        predictions={"prob": pred}
        export_outputs = {tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY: tf.estimator.export.PredictOutput(predictions)}
        # Provide an estimator spec for `ModeKeys.PREDICT`
        if mode == tf.estimator.ModeKeys.PREDICT:
            return tf.estimator.EstimatorSpec(
                    mode=mode,
                    predictions=predictions,
                    export_outputs=export_outputs)
     
        #------bulid loss------
        loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, labels=labels)) + 
            l2_reg * tf.nn.l2_loss(FM_W) + 
            l2_reg * tf.nn.l2_loss(FM_V) #+  l2_reg * tf.nn.l2_loss(sig_wgts)
     
        # Provide an estimator spec for `ModeKeys.EVAL`
        eval_metric_ops = {
            "auc": tf.metrics.auc(labels, pred)
        }
        if mode == tf.estimator.ModeKeys.EVAL:
            return tf.estimator.EstimatorSpec(
                    mode=mode,
                    predictions=predictions,
                    loss=loss,
                    eval_metric_ops=eval_metric_ops)
     
        #------bulid optimizer------
        if FLAGS.optimizer == 'Adam':
            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-8)
        elif FLAGS.optimizer == 'Adagrad':
            optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate, initial_accumulator_value=1e-8)
        elif FLAGS.optimizer == 'Momentum':
            optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate, momentum=0.95)
        elif FLAGS.optimizer == 'ftrl':
            optimizer = tf.train.FtrlOptimizer(learning_rate)
     
        train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
     
        # Provide an estimator spec for `ModeKeys.TRAIN` modes
        if mode == tf.estimator.ModeKeys.TRAIN:
            return tf.estimator.EstimatorSpec(
                    mode=mode,
                    predictions=predictions,
                    loss=loss,
                    train_op=train_op)
     
    def batch_norm_layer(x, train_phase, scope_bn):
        bn_train = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=True,  reuse=None, scope=scope_bn)
        bn_infer = tf.contrib.layers.batch_norm(x, decay=FLAGS.batch_norm_decay, center=True, scale=True, updates_collections=None, is_training=False, reuse=True, scope=scope_bn)
        z = tf.cond(tf.cast(train_phase, tf.bool), lambda: bn_train, lambda: bn_infer)
        return z
     
    def set_dist_env():
        if FLAGS.dist_mode == 1:        # 本地分布式测试模式1 chief, 1 ps, 1 evaluator
            ps_hosts = FLAGS.ps_hosts.split(',')
            chief_hosts = FLAGS.chief_hosts.split(',')
            task_index = FLAGS.task_index
            job_name = FLAGS.job_name
            print('ps_host', ps_hosts)
            print('chief_hosts', chief_hosts)
            print('job_name', job_name)
            print('task_index', str(task_index))
            # 无worker参数
            tf_config = {
                'cluster': {'chief': chief_hosts, 'ps': ps_hosts},
                'task': {'type': job_name, 'index': task_index }
            }
            print(json.dumps(tf_config))
            os.environ['TF_CONFIG'] = json.dumps(tf_config)
        elif FLAGS.dist_mode == 2:      # 集群分布式模式
            ps_hosts = FLAGS.ps_hosts.split(',')
            worker_hosts = FLAGS.worker_hosts.split(',')
            chief_hosts = worker_hosts[0:1] # get first worker as chief
            worker_hosts = worker_hosts[2:] # the rest as worker
            task_index = FLAGS.task_index
            job_name = FLAGS.job_name
            print('ps_host', ps_hosts)
            print('worker_host', worker_hosts)
            print('chief_hosts', chief_hosts)
            print('job_name', job_name)
            print('task_index', str(task_index))
            # use #worker=0 as chief
            if job_name == "worker" and task_index == 0:
                job_name = "chief"
            # use #worker=1 as evaluator
            if job_name == "worker" and task_index == 1:
                job_name = 'evaluator'
                task_index = 0
            # the others as worker
            if job_name == "worker" and task_index > 1:
                task_index -= 2
     
            tf_config = {
                'cluster': {'chief': chief_hosts, 'worker': worker_hosts, 'ps': ps_hosts},
                'task': {'type': job_name, 'index': task_index }
            }
            print(json.dumps(tf_config))
            os.environ['TF_CONFIG'] = json.dumps(tf_config)
     
    def main(_):
        #tr_files = glob.glob("%s/tr*libsvm" % FLAGS.data_dir)
     
        tr_files = FLAGS.data_dir+"train.txt"
        #random.shuffle(tr_files)
        print("tr_files:", tr_files)
        #va_files = glob.glob("%s/va*libsvm" % FLAGS.data_dir)
        va_files = FLAGS.data_dir + "va.txt"
        print("va_files:", va_files)
        #te_files = glob.glob("%s/te*libsvm" % FLAGS.data_dir)
        te_files = FLAGS.data_dir + "test.txt"
        print("te_files:", te_files)
     
        if FLAGS.clear_existing_model:
            try:
                shutil.rmtree(FLAGS.model_dir)
            except Exception as e:
                print(e, "at clear_existing_model")
            else:
                print("existing model cleaned at %s" % FLAGS.model_dir)
     
        set_dist_env()
     
        model_params = {
            "field_size": FLAGS.field_size,
            "feature_size": FLAGS.feature_size,
            "embedding_size": FLAGS.embedding_size,
            "learning_rate": FLAGS.learning_rate,
            "batch_norm_decay": FLAGS.batch_norm_decay,
            "l2_reg": FLAGS.l2_reg,
            "deep_layers": FLAGS.deep_layers,
            "dropout": FLAGS.dropout
        }
        config = tf.estimator.RunConfig().replace(session_config = tf.ConfigProto(device_count={'GPU':0, 'CPU':FLAGS.num_threads}),
                log_step_count_steps=FLAGS.log_steps, save_summary_steps=FLAGS.log_steps)
        DeepFM = tf.estimator.Estimator(model_fn=model_fn, model_dir=FLAGS.model_dir, params=model_params, config=config)
     
        if FLAGS.task_type == 'train':
            train_spec = tf.estimator.TrainSpec(input_fn=lambda: input_fn(tr_files, num_epochs=FLAGS.num_epochs, batch_size=FLAGS.batch_size))
            eval_spec = tf.estimator.EvalSpec(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size), steps=None, start_delay_secs=1000, throttle_secs=1200)
            tf.estimator.train_and_evaluate(DeepFM, train_spec, eval_spec)
        elif FLAGS.task_type == 'eval':
            DeepFM.evaluate(input_fn=lambda: input_fn(va_files, num_epochs=1, batch_size=FLAGS.batch_size))
        elif FLAGS.task_type == 'infer':
            preds = DeepFM.predict(input_fn=lambda: input_fn(te_files, num_epochs=1, batch_size=FLAGS.batch_size), predict_keys="prob")
            with open(FLAGS.data_dir+"/pred.txt", "w") as fo:
                for prob in preds:
                    fo.write("%f
    " % (prob['prob']))
        elif FLAGS.task_type == 'export':
            #feature_spec = tf.feature_column.make_parse_example_spec(feature_columns)
            #feature_spec = {
            #    'feat_ids': tf.FixedLenFeature(dtype=tf.int64, shape=[None, FLAGS.field_size]),
            #    'feat_vals': tf.FixedLenFeature(dtype=tf.float32, shape=[None, FLAGS.field_size])
            #}
            #serving_input_receiver_fn = tf.estimator.export.build_parsing_serving_input_receiver_fn(feature_spec)
            feature_spec = {
                'feat_ids': tf.placeholder(dtype=tf.int64, shape=[None, FLAGS.field_size], name='feat_ids'),
                'feat_vals': tf.placeholder(dtype=tf.float32, shape=[None, FLAGS.field_size], name='feat_vals')
            }
            serving_input_receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec)
            DeepFM.export_savedmodel(FLAGS.servable_model_dir, serving_input_receiver_fn)
     
    if __name__ == "__main__":
        #------check Arguments------
        if FLAGS.dt_dir == "":
            FLAGS.dt_dir = (date.today() + timedelta(-1)).strftime('%Y%m%d')
        FLAGS.model_dir = FLAGS.model_dir + FLAGS.dt_dir
        #FLAGS.data_dir  = FLAGS.data_dir + FLAGS.dt_dir
     
        print('task_type ', FLAGS.task_type)
        print('model_dir ', FLAGS.model_dir)
        print('data_dir ', FLAGS.data_dir)
        print('dt_dir ', FLAGS.dt_dir)
        print('num_epochs ', FLAGS.num_epochs)
        print('feature_size ', FLAGS.feature_size)
        print('field_size ', FLAGS.field_size)
        print('embedding_size ', FLAGS.embedding_size)
        print('batch_size ', FLAGS.batch_size)
        print('deep_layers ', FLAGS.deep_layers)
        print('dropout ', FLAGS.dropout)
        print('loss_type ', FLAGS.loss_type)
        print('optimizer ', FLAGS.optimizer)
        print('learning_rate ', FLAGS.learning_rate)
        print('batch_norm_decay ', FLAGS.batch_norm_decay)
        print('batch_norm ', FLAGS.batch_norm)
        print('l2_reg ', FLAGS.l2_reg)
     
        tf.logging.set_verbosity(tf.logging.INFO)
        tf.app.run()
    

      模型训练以及保存为pb格式代码,训练过程会先checkpoint,然后再保存:

    python3 DeepFM.py --task_type=train --learning_rate=0.0005 --optimizer=Adam --num_epochs=1 --batch_size=256 --field_size=8 --feature_size=39 --deep_layers=400,400,400 --dropout=0.5,0.5,0.5 --log_steps=1000 --num_threads=8 --model_dir=tensorflow/  --data_dir=data/
    

      

    python3 DeepFM.py --task_type=export --learning_rate=0.0005 --optimizer=Adam --batch_size=256 --field_size=8 --feature_size=39 --deep_layers=400,400,400 --dropout=0.5,0.5,0.5 --log_steps=1000 --num_threads=8 --model_dir=tensorflow/ --servable_model_dir=servermodel/
    

      tensorflow-serving命令:

    bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server --port=9000  --model_base_path=/Users/shuubiasahi/Desktop/modelserving
    

      

    java中调请求serving返回结果:

    package org.ranksys.javafm.example;
     
    import java.util.Arrays;
    import java.util.HashMap;
    import java.util.List;
    import java.util.Map;
     
    import org.tensorflow.framework.DataType;
    import org.tensorflow.framework.TensorProto;
    import org.tensorflow.framework.TensorShapeProto;
     
    import io.grpc.ManagedChannel;
    import io.grpc.ManagedChannelBuilder;
    import tensorflow.serving.Model;
    import tensorflow.serving.Predict;
    import tensorflow.serving.PredictionServiceGrpc;
     
    public class DeepFMPrediction {
    	public static void main(String[] args) {
    		List<Integer> ids_vec = Arrays.asList(1, 2, 3, 4, 5, 13, 31, 38);
     
    		List<Float> vals_vec = Arrays.asList(0.076f, 0.796f, 0.4707f, 0.21f,
    				0.83f, 1.0f, 1.0f, 1.0f);
     
    		ManagedChannel channel = ManagedChannelBuilder
    				.forAddress("0.0.0.0", 9000).usePlaintext(true).build();
    		// 这里还是先用block模式
    		PredictionServiceGrpc.PredictionServiceBlockingStub stub = PredictionServiceGrpc
    				.newBlockingStub(channel);
    		// 创建请求
    		Predict.PredictRequest.Builder predictRequestBuilder = Predict.PredictRequest
    				.newBuilder();
    		// 模型名称和模型方法名预设
    		Model.ModelSpec.Builder modelSpecBuilder = Model.ModelSpec.newBuilder();
    		modelSpecBuilder.setName("default");
    		modelSpecBuilder.setSignatureName("");
    		predictRequestBuilder.setModelSpec(modelSpecBuilder);
    		
    		
    		TensorShapeProto.Builder tensorShapeBuilder = TensorShapeProto.newBuilder();
    		tensorShapeBuilder.addDim(TensorShapeProto.Dim.newBuilder().setSize(1));
    		tensorShapeBuilder.addDim(TensorShapeProto.Dim.newBuilder().setSize(8));
     
    		// 设置入参1
    		TensorProto.Builder tensorids_ids = TensorProto.newBuilder();
    		tensorids_ids.setDtype(DataType.DT_INT64);
    		tensorids_ids.setTensorShape(tensorShapeBuilder.build());
    		tensorids_ids.addAllIntVal(ids_vec);
    		
    		// 设置入参2
    		
    		TensorProto.Builder tensorids_val = TensorProto.newBuilder();
    		tensorids_val.setDtype(DataType.DT_FLOAT);
    		tensorids_val.setTensorShape(tensorShapeBuilder.build());
    		tensorids_val.addAllFloatVal(vals_vec);
    		
    		Map<String, TensorProto>  map=new HashMap<String, TensorProto>();
    		map.put("feat_ids", tensorids_ids.build());
    		map.put("feat_vals", tensorids_val.build());
    		
    		predictRequestBuilder.putAllInputs(map);
    		
    		Predict.PredictResponse predictResponse = stub.predict(predictRequestBuilder.build());
    		System.out.println(predictResponse);
     
    	}
     
    }
    

      

    结果:

  • 相关阅读:
    sqlserver建立临时表
    动态引用WebService
    技术的力量:30分钟的动画片和《彗星撞地球》超炫的动画 仅64K
    sqlserver2005新功能函数
    使用面向对象的、完整的单点登录功能
    asp.net上传功能(单文件,多文件,自定义生成缩略图,水印)
    C#对字符和文件的加密解密类
    JavaScript中setInterval函数应用常见问题之一(第一个参数不加引号与加引号的区别)
    JavaScript表格隔行换色悬停高亮
    Javascript模拟c#中arraylist操作(学习分享)
  • 原文地址:https://www.cnblogs.com/zhangbojiangfeng/p/12054581.html
Copyright © 2011-2022 走看看