zoukankan      html  css  js  c++  java
  • Go 1.9 sync.Map揭秘

    Go 1.9 sync.Map揭秘

    目录 [−]

    1. 有并发问题的map
    2. Go 1.9之前的解决方案
    3. sync.Map
      1. Load
      2. Store
      3. Delete
      4. Range
    4. sync.Map的性能
    5. 其它

    在Go 1.6之前, 内置的map类型是部分goroutine安全的,并发的读没有问题,并发的写可能有问题。自go 1.6之后, 并发地读写map会报错,这在一些知名的开源库中都存在这个问题,所以go 1.9之前的解决方案是额外绑定一个锁,封装成一个新的struct或者单独使用锁都可以。

    本文带你深入到sync.Map的具体实现中,看看为了增加一个功能,代码是如何变的复杂的,以及作者在实现sync.Map的一些思想。

    有并发问题的map

    官方的faq已经提到内建的map不是线程(goroutine)安全的。

    首先,让我们看一段并发读写的代码,下列程序中一个goroutine一直读,一个goroutine一只写同一个键值,即即使读写的键不相同,而且map也没有"扩容"等操作,代码还是会报错。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    package main
    func main() {
    m := make(map[int]int)
    go func() {
    for {
    _ = m[1]
    }
    }()
    go func() {
    for {
    m[2] = 2
    }
    }()
    select {}
    }

    错误信息是: fatal error: concurrent map read and map write

    如果你查看Go的源代码: hashmap_fast.go#L118,会看到读的时候会检查hashWriting标志, 如果有这个标志,就会报并发错误。

    写的时候会设置这个标志: hashmap.go#L542

    1
    h.flags |= hashWriting

    hashmap.go#L628设置完之后会取消这个标记。

    当然,代码中还有好几处并发读写的检查, 比如写的时候也会检查是不是有并发的写,删除键的时候类似写,遍历的时候并发读写问题等。

    有时候,map的并发问题不是那么容易被发现, 你可以利用-race参数来检查。

    Go 1.9之前的解决方案

    但是,很多时候,我们会并发地使用map对象,尤其是在一定规模的项目中,map总会保存goroutine共享的数据。在Go官方blog的Go maps in action一文中,提供了一种简便的解决方案。

    1
    2
    3
    4
    var counter = struct{
    sync.RWMutex
    m map[string]int
    }{m: make(map[string]int)}

    它使用嵌入struct为map增加一个读写锁。

    读数据的时候很方便的加锁:

    1
    2
    3
    4
    counter.RLock()
    n := counter.m["some_key"]
    counter.RUnlock()
    fmt.Println("some_key:", n)

    写数据的时候:

    1
    2
    3
    counter.Lock()
    counter.m["some_key"]++
    counter.Unlock()

    sync.Map

    可以说,上面的解决方案相当简洁,并且利用读写锁而不是Mutex可以进一步减少读写的时候因为锁带来的性能。

    但是,它在一些场景下也有问题,如果熟悉Java的同学,可以对比一下java的ConcurrentHashMap的实现,在map的数据非常大的情况下,一把锁会导致大并发的客户端共争一把锁,Java的解决方案是shard, 内部使用多个锁,每个区间共享一把锁,这样减少了数据共享一把锁带来的性能影响,orcaman提供了这个思路的一个实现: concurrent-map,他也询问了Go相关的开发人员是否在Go中也实现这种方案,由于实现的复杂性,答案是Yes, we considered it.,但是除非有特别的性能提升和应用场景,否则没有进一步的开发消息。

    那么,在Go 1.9中sync.Map是怎么实现的呢?它是如何解决并发提升性能的呢?

    sync.Map的实现有几个优化点,这里先列出来,我们后面慢慢分析。

    1. 空间换时间。 通过冗余的两个数据结构(read、dirty),实现加锁对性能的影响。
    2. 使用只读数据(read),避免读写冲突。
    3. 动态调整,miss次数多了之后,将dirty数据提升为read。
    4. double-checking。
    5. 延迟删除。 删除一个键值只是打标记,只有在提升dirty的时候才清理删除的数据。
    6. 优先从read读取、更新、删除,因为对read的读取不需要锁。

    下面我们介绍sync.Map的重点代码,以便理解它的实现思想。

    首先,我们看一下sync.Map的数据结构:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    type Map struct {
    // 当涉及到dirty数据的操作的时候,需要使用这个锁
    mu Mutex
    // 一个只读的数据结构,因为只读,所以不会有读写冲突。
    // 所以从这个数据中读取总是安全的。
    // 实际上,实际也会更新这个数据的entries,如果entry是未删除的(unexpunged), 并不需要加锁。如果entry已经被删除了,需要加锁,以便更新dirty数据。
    read atomic.Value // readOnly
    // dirty数据包含当前的map包含的entries,它包含最新的entries(包括read中未删除的数据,虽有冗余,但是提升dirty字段为read的时候非常快,不用一个一个的复制,而是直接将这个数据结构作为read字段的一部分),有些数据还可能没有移动到read字段中。
    // 对于dirty的操作哦需要加锁,因为对它的操作可能会有读写竞争。
    // 当dirty为空的时候, 比如初始化或者刚提升完,下一次的写操作会复制read字段中未删除的数据到这个数据中。
    dirty map[interface{}]*entry
    // 当从Map中读取entry的时候,如果read中不包含这个entry,会尝试从dirty中读取,这个时候会将misses加一,
    // 当misses累积到 dirty的长度的时候, 就会将dirty提升为read,避免从dirty中miss太多次。因为操作dirty需要加锁。
    misses int
    }

    它的数据结构很简单,值包含四个字段:readmudirtymisses

    它使用了冗余的数据结构readdirtydirty中会包含read中为删除的entries,新增加的entries会加入到dirty中。

    read的数据结构是:

    1
    2
    3
    4
    type readOnly struct {
    m map[interface{}]*entry
    amended bool // 如果Map.dirty有些数据不在中的时候,这个值为true
    }

    amended指明Map.dirty中有readOnly.m未包含的数据,所以如果从Map.read找不到数据的话,还要进一步到Map.dirty中查找。

    对Map.read的修改是通过原子操作进行的。

    虽然readdirty有冗余数据,但这些数据是通过指针指向同一个数据,所以尽管Map的value会很大,但是冗余的空间占用还是有限的。

    readOnly.mMap.dirty存储的值类型是*entry,它包含一个指针p, 指向用户存储的value值。

    1
    2
    3
    type entry struct {
    p unsafe.Pointer // *interface{}
    }

    p有三种值:

    • nil: entry已被删除了,并且m.dirty为nil
    • expunged: entry已被删除了,并且m.dirty不为nil,而且这个entry不存在于m.dirty中
    • 其它: entry是一个正常的值

    以上是sync.Map的数据结构,下面我们重点看看LoadStoreDeleteRange这四个方法,其它辅助方法可以参考这四个方法来理解。

    Load

    加载方法,也就是提供一个键key,查找对应的值value,如果不存在,通过ok反映:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    func (m *Map) Load(key interface{}) (value interface{}, ok bool) {
    // 1.首先从m.read中得到只读readOnly,从它的map中查找,不需要加锁
    read, _ := m.read.Load().(readOnly)
    e, ok := read.m[key]
    // 2. 如果没找到,并且m.dirty中有新数据,需要从m.dirty查找,这个时候需要加锁
    if !ok && read.amended {
    m.mu.Lock()
    // 双检查,避免加锁的时候m.dirty提升为m.read,这个时候m.read可能被替换了。
    read, _ = m.read.Load().(readOnly)
    e, ok = read.m[key]
    // 如果m.read中还是不存在,并且m.dirty中有新数据
    if !ok && read.amended {
    // 从m.dirty查找
    e, ok = m.dirty[key]
    // 不管m.dirty中存不存在,都将misses计数加一
    // missLocked()中满足条件后就会提升m.dirty
    m.missLocked()
    }
    m.mu.Unlock()
    }
    if !ok {
    return nil, false
    }
    return e.load()
    }

    这里有两个值的关注的地方。一个是首先从m.read中加载,不存在的情况下,并且m.dirty中有新数据,加锁,然后从m.dirty中加载。

    二是这里使用了双检查的处理,因为在下面的两个语句中,这两行语句并不是一个原子操作。

    1
    2
    if !ok && read.amended {
    m.mu.Lock()

    虽然第一句执行的时候条件满足,但是在加锁之前,m.dirty可能被提升为m.read,所以加锁后还得再检查m.read,后续的方法中都使用了这个方法。

    双检查的技术Java程序员非常熟悉了,单例模式的实现之一就是利用双检查的技术。

    可以看到,如果我们查询的键值正好存在于m.read中,无须加锁,直接返回,理论上性能优异。即使不存在于m.read中,经过miss几次之后,m.dirty会被提升为m.read,又会从m.read中查找。所以对于更新/增加较少,加载存在的key很多的case,性能基本和无锁的map类似。

    下面看看m.dirty是如何被提升的。 missLocked方法中可能会将m.dirty提升。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    func (m *Map) missLocked() {
    m.misses++
    if m.misses < len(m.dirty) {
    return
    }
    m.read.Store(readOnly{m: m.dirty})
    m.dirty = nil
    m.misses = 0
    }

    上面的最后三行代码就是提升m.dirty的,很简单的将m.dirty作为readOnlym字段,原子更新m.read。提升后m.dirtym.misses重置, 并且m.read.amended为false。

    Store

    这个方法是更新或者新增一个entry。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    func (m *Map) Store(key, value interface{}) {
    // 如果m.read存在这个键,并且这个entry没有被标记删除,尝试直接存储。
    // 因为m.dirty也指向这个entry,所以m.dirty也保持最新的entry。
    read, _ := m.read.Load().(readOnly)
    if e, ok := read.m[key]; ok && e.tryStore(&value) {
    return
    }
    // 如果`m.read`不存在或者已经被标记删除
    m.mu.Lock()
    read, _ = m.read.Load().(readOnly)
    if e, ok := read.m[key]; ok {
    if e.unexpungeLocked() { //标记成未被删除
    m.dirty[key] = e //m.dirty中不存在这个键,所以加如m.dirty
    }
    e.storeLocked(&value) //更新
    } else if e, ok := m.dirty[key]; ok { // m.dirty存在这个键,更新
    e.storeLocked(&value)
    } else { //新键值
    if !read.amended { //m.dirty中没有新的数据,往m.dirty中增加第一个新键
    m.dirtyLocked() //从m.read中复制未删除的数据
    m.read.Store(readOnly{m: read.m, amended: true})
    }
    m.dirty[key] = newEntry(value) //将这个entry加入到m.dirty中
    }
    m.mu.Unlock()
    }
    func (m *Map) dirtyLocked() {
    if m.dirty != nil {
    return
    }
    read, _ := m.read.Load().(readOnly)
    m.dirty = make(map[interface{}]*entry, len(read.m))
    for k, e := range read.m {
    if !e.tryExpungeLocked() {
    m.dirty[k] = e
    }
    }
    }
    func (e *entry) tryExpungeLocked() (isExpunged bool) {
    p := atomic.LoadPointer(&e.p)
    for p == nil {
    // 将已经删除标记为nil的数据标记为expunged
    if atomic.CompareAndSwapPointer(&e.p, nil, expunged) {
    return true
    }
    p = atomic.LoadPointer(&e.p)
    }
    return p == expunged
    }

    你可以看到,以上操作都是先从操作m.read开始的,不满足条件再加锁,然后操作m.dirty

    Store可能会在某种情况下(初始化或者m.dirty刚被提升后)从m.read中复制数据,如果这个时候m.read中数据量非常大,可能会影响性能。

    Delete

    删除一个键值。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    func (m *Map) Delete(key interface{}) {
    read, _ := m.read.Load().(readOnly)
    e, ok := read.m[key]
    if !ok && read.amended {
    m.mu.Lock()
    read, _ = m.read.Load().(readOnly)
    e, ok = read.m[key]
    if !ok && read.amended {
    delete(m.dirty, key)
    }
    m.mu.Unlock()
    }
    if ok {
    e.delete()
    }
    }

    同样,删除操作还是从m.read中开始, 如果这个entry不存在于m.read中,并且m.dirty中有新数据,则加锁尝试从m.dirty中删除。

    注意,还是要双检查的。 从m.dirty中直接删除即可,就当它没存在过,但是如果是从m.read中删除,并不会直接删除,而是打标记:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    func (e *entry) delete() (hadValue bool) {
    for {
    p := atomic.LoadPointer(&e.p)
    // 已标记为删除
    if p == nil || p == expunged {
    return false
    }
    // 原子操作,e.p标记为nil
    if atomic.CompareAndSwapPointer(&e.p, p, nil) {
    return true
    }
    }
    }

    Range

    因为for ... range map是内建的语言特性,所以没有办法使用for range遍历sync.Map, 但是可以使用它的Range方法,通过回调的方式遍历。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    func (m *Map) Range(f func(key, value interface{}) bool) {
    read, _ := m.read.Load().(readOnly)
    // 如果m.dirty中有新数据,则提升m.dirty,然后在遍历
    if read.amended {
    //提升m.dirty
    m.mu.Lock()
    read, _ = m.read.Load().(readOnly) //双检查
    if read.amended {
    read = readOnly{m: m.dirty}
    m.read.Store(read)
    m.dirty = nil
    m.misses = 0
    }
    m.mu.Unlock()
    }
    // 遍历, for range是安全的
    for k, e := range read.m {
    v, ok := e.load()
    if !ok {
    continue
    }
    if !f(k, v) {
    break
    }
    }
    }

    Range方法调用前可能会做一个m.dirty的提升,不过提升m.dirty不是一个耗时的操作。

    sync.Map的性能

    Go 1.9源代码中提供了性能的测试: map_bench_test.gomap_reference_test.go

    我也基于这些代码修改了一下,得到下面的测试数据,相比较以前的解决方案,性能多少回有些提升,如果你特别关注性能,可以考虑sync.Map

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    BenchmarkHitAll/*sync.RWMutexMap-4 20000000 83.8 ns/op
    BenchmarkHitAll/*sync.Map-4 30000000 59.9 ns/op
    BenchmarkHitAll_WithoutPrompting/*sync.RWMutexMap-4 20000000 96.9 ns/op
    BenchmarkHitAll_WithoutPrompting/*sync.Map-4 20000000 64.1 ns/op
    BenchmarkHitNone/*sync.RWMutexMap-4 20000000 79.1 ns/op
    BenchmarkHitNone/*sync.Map-4 30000000 43.3 ns/op
    BenchmarkHit_WithoutPrompting/*sync.RWMutexMap-4 20000000 81.5 ns/op
    BenchmarkHit_WithoutPrompting/*sync.Map-4 30000000 44.0 ns/op
    BenchmarkUpdate/*sync.RWMutexMap-4 5000000 328 ns/op
    BenchmarkUpdate/*sync.Map-4 10000000 146 ns/op
    BenchmarkUpdate_WithoutPrompting/*sync.RWMutexMap-4 5000000 336 ns/op
    BenchmarkUpdate_WithoutPrompting/*sync.Map-4 5000000 324 ns/op
    BenchmarkDelete/*sync.RWMutexMap-4 10000000 155 ns/op
    BenchmarkDelete/*sync.Map-4 30000000 55.0 ns/op
    BenchmarkDelete_WithoutPrompting/*sync.RWMutexMap-4 10000000 173 ns/op
    BenchmarkDelete_WithoutPrompting/*sync.Map-4 10000000 147 ns/op

    其它

    sync.Map没有Len方法,并且目前没有迹象要加上 (issue#20680),所以如果想得到当前Map中有效的entries的数量,需要使用Range方法遍历一次, 比较X疼。

    LoadOrStore方法如果提供的key存在,则返回已存在的值(Load),否则保存提供的键值(Store)。




  • 相关阅读:
    用Visual Studio 2005/2008提取EXE文件中的资源[图片|htm|光标文件]
    C# 操作Excel之旁门左道 [ C# | Excel ]
    ExtJs 备忘录(1)—— Form表单(一) [ 控件使用 ]
    Win7(64位)安装Microsoft SQL Server Management Studio Express[error 29506]
    ExtJs 备忘录(8)—— 管理界面搭建和其他部分控件介绍
    Visual Studio 模板 —— 自定义WebForm模板
    让Visual Studio 也支持JS代码折叠 [ Visual Studio | #region | #endregion ]
    ExtJs 备忘录(3)—— Form表单(三) [ 数据验证 ]
    ExtJs 备忘录(7)—— GirdPanl表格(三) [ 统计|查看、修改单行记录 ]
    让Visual Studio 也支持JS代码折叠 —— 续 [ Visual Studio | Js | ScriptOutline | SmallOutline ]
  • 原文地址:https://www.cnblogs.com/zhangboyu/p/7456687.html
Copyright © 2011-2022 走看看