zoukankan      html  css  js  c++  java
  • 【HDU2019多校】E

    There are nn pirate chests buried in Byteland, labeled by 1,2,,n1,2,…,n. The ii-th chest's location is (xi,yi)(xi,yi), and its value is wiwi, wiwi can be negative since the pirate can add some poisonous gases into the chest. When you open the ii-th pirate chest, you will get wiwi value. 

    You want to make money from these pirate chests. You can select a rectangle, the sides of which are all paralleled to the axes, and then all the chests inside it or on its border will be opened. Note that you must open all the chests within that range regardless of their values are positive or negative. But you can choose a rectangle with nothing in it to get a zero sum. 

    Please write a program to find the best rectangle with maximum total value.

    InputThe first line of the input contains an integer T(1T100)T(1≤T≤100), denoting the number of test cases. 

    In each test case, there is one integer n(1n2000)n(1≤n≤2000) in the first line, denoting the number of pirate chests. 

    For the next nn lines, each line contains three integers xi,yi,wi(109xi,yi,wi109)xi,yi,wi(−109≤xi,yi,wi≤109), denoting each pirate chest. 

    It is guaranteed that n10000∑n≤10000.
    OutputFor each test case, print a single line containing an integer, denoting the maximum total value.Sample Input

    2
    4
    1 1 50
    2 1 50
    1 2 50
    2 2 -500
    2
    -1 1 5
    -1 1 1

    Sample Output

    100
    6

    SOLUTION:
    都是都是套路,每次枚举矩形的上边界
    然后每个下边界加入线段树后,查询最大字段和。

    CODE:
    #include <bits/stdc++.h>
    #define INF 0x3f3f3f3f
    using namespace std;
    typedef long long ll;
    
    const int N = 2005;
    
    struct T{
        ll x, y, w;
        T(){}
        T(ll x, ll y, ll w): x(x), y(y), w(w){}
    }a[N];
    
    bool cmp(const T& a, const T& b)
    {
        return a.x < b.x;
    }
    
    int b[N];
    
    struct {
        int l, r;
        ll lx, rx, mx;
        ll sum;
    }tree[N << 2];
    
    void build(int k, int l, int r)
    {
        tree[k].l = l;
        tree[k].r = r;
        tree[k].sum = tree[k].lx = tree[k].rx = tree[k].mx = 0;
        if(l == r)
            return;
        int mid = (l + r) / 2;
        build(2*k, l, mid);
        build(2*k + 1, mid + 1, r);
    }
    
    void push_up(int k)
    {
        tree[k].sum = tree[2*k].sum + tree[2*k+1].sum;
        tree[k].lx = max(tree[2*k].lx, tree[2*k].sum + tree[2*k+1].lx);
        tree[k].rx = max(tree[2*k+1].rx, tree[2*k+1].sum + tree[2*k].rx);
        tree[k].mx = max(max(tree[2*k].mx, tree[2*k+1].mx), tree[2*k].rx + tree[2*k+1].lx);
    }
    
    void insert(int k, int x, int w)
    {
        if(tree[k].l == tree[k].r){
            tree[k].sum = tree[k].lx = tree[k].rx = tree[k].mx = tree[k].mx + w;
            return;
        }
        int mid = (tree[k].l + tree[k].r) / 2;
        if(x <= mid)
            insert(2*k, x, w);
        else
            insert(2*k+1, x, w);
        push_up(k);
    }
    
    inline ll query()
    {
        return tree[1].mx;
    }
    
    int main()
    {
        ios::sync_with_stdio(false);
        int t;
        cin >> t;
        while(t --){
            int n;
            cin >> n;
            for(int i = 1; i <= n; i ++){
                ll x, y, w;
                cin >> x >> y >> w;
                a[i] = T(x, y, w);
                b[i] = y;
            }
            sort(b + 1, b + n + 1);
            int k = unique(b + 1, b + n + 1) - b - 1;
            for(int i = 1; i <= n; i ++){
                int y = lower_bound(b + 1, b + k + 1, a[i].y) - b;
                a[i].y = y;
            }
            sort(a + 1, a + n + 1, cmp);
            ll ans = 0;
            for(int i = 1; i <= n; i ++){
                if(i != 1 && a[i].x == a[i - 1].x)
                    continue;
                build(1, 1, k);
                for(int j = i; j <= n; j ++){
                    if(j != i && a[j].x != a[j - 1].x)
                        ans = max(ans, query());
                    insert(1, a[j].y, a[j].w);
                }
                ans = max(ans, query());
            }
            cout << ans << endl;
        }
        return 0;
    }
    

      









  • 相关阅读:
    osip2 代码分析
    批处理命令——call 和 start
    在VS2010 VC++项目中引用Lib静态库(以Openssl为例)
    Gerrit 代码审核服务器的工作流和原理
    crucible VS gerrit
    领导者/追随者(Leader/Followers)模型和半同步/半异步(half-sync/half-async)模型都是常用的客户-服务器编程模型
    半同步半异步I/O的设计模式(half sync/half async)
    高并发系统设计
    通过Nginx反向代理之后客户端验证码session不一致造成无法验证通过的问题解决
    使用Nodpad++正则替换
  • 原文地址:https://www.cnblogs.com/zhangbuang/p/11386932.html
Copyright © 2011-2022 走看看