设n是奇数,证明:16|(n4+4n2+11)
解:
令n=2k+1,k∈z
n4+4n2+11
=(2k+1)4+4(2k+1)2+11
=(4k2+4k+1)2+(2k+1)2+11
=16k4+16k3+k2+16k3+16k2+4k+4k2+4k+1+16k2+16k+4+11
=8(2k4+4k3+5k2+3k+2)
注:2k2 肯定是偶数;
4k3肯定是偶数;
5k2和3k同奇偶,所以5k2+3k肯定是偶数;
2是偶数。
所以,2k4+4k3+5k2+3k+2肯定是偶数。
即,2k4+4k3+5k2+3k+2肯定能被2整除。
所以,n4+4n2+11肯定能被16整除;
命题得证;