zoukankan      html  css  js  c++  java
  • hdu-4123 Bob’s Race(树形dp+RMQ)

    题目链接:

    Bob’s Race

    Time Limit: 5000/2000 MS (Java/Others)   

     Memory Limit: 32768/32768 K (Java/Others)


    Problem Description
    Bob wants to hold a race to encourage people to do sports. He has got trouble in choosing the route. There are N houses and N - 1 roads in his village. Each road connects two houses, and all houses are connected together. To make the race more interesting, he requires that every participant must start from a different house and run AS FAR AS POSSIBLE without passing a road more than once. The distance difference between the one who runs the longest distance and the one who runs the shortest distance is called “race difference” by Bob. Bob does not want the “race difference”to be more than Q. The houses are numbered from 1 to N. Bob wants that the No. of all starting house must be consecutive. He is now asking you for help. He wants to know the maximum number of starting houses he can choose, by other words, the maximum number of people who can take part in his race.
     
    Input
     
    There are several test cases.
    The first line of each test case contains two integers N and M. N is the number of houses, M is the number of queries.
    The following N-1 lines, each contains three integers, x, y and z, indicating that there is a road of length z connecting house x and house y.
    The following M lines are the queries. Each line contains an integer Q, asking that at most how many people can take part in Bob’s race according to the above mentioned rules and under the condition that the“race difference”is no more than Q. 

    The input ends with N = 0 and M = 0.

    (N<=50000 M<=500 1<=x,y<=N 0<=z<=5000 Q<=10000000)
     
    Output
     
    For each test case, you should output the answer in a line for each query.
     
    Sample Input
     
    5 5
    1 2 3
    2 3 4
    4 5 3
    3 4 2
    1
    2
    3
    4
    5
    0 0
     
    Sample Output
    1
    3
    3
    3
    5
     
    题意:
     
    给一棵树,从每个点出发,这点的权值为这点能到的最远的距离;有m个询问,问连续的ans个点的权值<=q,(ans为要求的最大值);
     
    思路:
     
    先3遍的bfs找出每个点的权值,然后用ST算法求出RMQ;然后用尺取法来找出答案,也可以用单调队列搞定;
     
    AC代码:
     
    /*4123    717MS    13772K    3360 B    G++    2014300227*/
    #include <bits/stdc++.h>
    #include <cmath>
    using namespace std;
    const int N=50004;
    int n,m,u,v,w,cnt,head[N];
    struct Edge
    {
        int to,next,val;
    };
    Edge edge[2*N];
    void add_edge(int s,int e,int va)
    {
        edge[cnt].to=e;
        edge[cnt].next=head[s];
        edge[cnt].val=va;
        head[s]=cnt++;
    }
    int dis1[N],dis2[N],dis[N],pin[N][25],pax[N][25],vis[N],f[N];
    queue<int>qu;
    int bfs()
    {
        memset(vis,0,sizeof(vis));
        //memset(dis1,0,sizeof(dis1));
        qu.push(1);
        vis[1]=1;
        dis1[1]=0;
        while(!qu.empty())
        {
            int fr=qu.front();
            qu.pop();
            for(int i=head[fr];i!=-1;i=edge[i].next)
            {
                int fx=edge[i].to;
                if(!vis[fx])
                {
                    dis1[fx]=dis1[fr]+edge[i].val;
                    vis[fx]=1;
                    qu.push(fx);
                }
            }
        }
    }
    int bfs1()
    {
        int ans=1;
        for(int i=1;i<=n;i++)
        {
            if(dis1[i]>=dis1[ans])
            {
                ans=i;
            }
        }
        //memset(dis1,0,sizeof(dis1));
        memset(vis,0,sizeof(vis));
        qu.push(ans);
        vis[ans]=1;
        dis1[ans]=0;
        while(!qu.empty())
        {
            int fr=qu.front();
            qu.pop();
            for(int i=head[fr];i!=-1;i=edge[i].next)
            {
                int fx=edge[i].to;
                if(!vis[fx])
                {
                    dis1[fx]=dis1[fr]+edge[i].val;
                    vis[fx]=1;
                    qu.push(fx);
                }
            }
        }
    }
    int bfs2()
    {
        //memset(dis2,0,sizeof(dis2));
        memset(vis,0,sizeof(vis));
        int ans=1;
        for(int i=1;i<=n;i++)
        {
            if(dis1[i]>=dis1[ans])
            {
                ans=i;
            }
        }
        qu.push(ans);
        vis[ans]=1;
        dis2[ans]=0;
        while(!qu.empty())
        {
            int fr=qu.front();
            qu.pop();
            for(int i=head[fr];i!=-1;i=edge[i].next)
            {
                int fx=edge[i].to;
                if(!vis[fx])
                {
                    vis[fx]=1;
                    dis2[fx]=dis2[fr]+edge[i].val;
                    qu.push(fx);
                }
            }
        }
    }
    int rmq()
    {
    
        for(int i=1;i<=n;i++)
        {
            f[i]=(int)(log(i*1.0)/log(2.0));
            dis[i]=max(dis1[i],dis2[i]);
           pax[i][0]=pin[i][0]=dis[i];
    
        }
        for(int j=1;j<=f[n];j++)
        {
            for(int i=1;i+(1<<(j-1))<=n+1;i++)
            {
                pin[i][j]=min(pin[i][j-1],pin[i+(1<<(j-1))][j-1]);
                pax[i][j]=max(pax[i][j-1],pax[i+(1<<(j-1))][j-1]);
            }
        }
    }
    int get_ans(int x)
    {
        int l=1,r=1,ans=0,mmax,mmin;
        while(r<=n)
        {
            int temp=f[r-l+1];
            mmax=max(pax[l][temp],pax[r-(1<<temp)+1][temp]);
            mmin=min(pin[l][temp],pin[r-(1<<temp)+1][temp]);
            if(mmax-mmin<=x)ans=max(ans,r-l+1),r++;
            else l++;
        }
        return ans;
    }
    int main()
    {
        while(1)
        {
            scanf("%d%d",&n,&m);
            if(n==0&&m==0)break;
            cnt=0;
            memset(head,-1,sizeof(head));
            for(int i=1;i<n;i++)
            {
                scanf("%d%d%d",&u,&v,&w);
                add_edge(u,v,w);
                add_edge(v,u,w);
            }
            bfs();
            bfs1();
            bfs2();
            rmq();
            while(m--)
            {
                int q;
                scanf("%d",&q);
                printf("%d
    ",get_ans(q));
            }
    
        }
    }
  • 相关阅读:
    大端法小端法以及判断方法
    多线程的同步互斥
    LeetCode344 字符串反转
    LeetCode977 有序数组的平方
    剑指54 二叉搜索树的第k大节点
    Linux抓包工具tcpdump使用总结,WireShark的过滤用法
    二进制部署k8s集群(8):安装容器网络插件Flannel
    python--Yaml操作
    python--读写excle执行测试用例
    python--安装、操作mysql数据库
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5392059.html
Copyright © 2011-2022 走看看