zoukankan      html  css  js  c++  java
  • codeforces 689E E. Mike and Geometry Problem(组合数学)

    题目链接:

    E. Mike and Geometry Problem

    time limit per test
    3 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Mike wants to prepare for IMO but he doesn't know geometry, so his teacher gave him an interesting geometry problem. Let's definef([l, r]) = r - l + 1 to be the number of integer points in the segment [l, r] with l ≤ r (say that ). You are given two integers nand k and n closed intervals [li, ri] on OX axis and you have to find:

    In other words, you should find the sum of the number of integer points in the intersection of any k of the segments.

    As the answer may be very large, output it modulo 1000000007 (109 + 7).

    Mike can't solve this problem so he needs your help. You will help him, won't you?

     
    Input
     

    The first line contains two integers n and k (1 ≤ k ≤ n ≤ 200 000) — the number of segments and the number of segments in intersection groups respectively.

    Then n lines follow, the i-th line contains two integers li, ri ( - 109 ≤ li ≤ ri ≤ 109), describing i-th segment bounds.

     
    Output
     

    Print one integer number — the answer to Mike's problem modulo 1000000007 (109 + 7) in the only line.

     
    Examples
     
    input
    3 2
    1 2
    1 3
    2 3
    output
    5
    input
    3 3
    1 3
    1 3
    1 3
    output
    3
    input
    3 1
    1 2
    2 3
    3 4
    output
    6

    题意:

    在n个区间里选k个,得到的f等于区间交的点数;求所有的选择方案的和;

    思路:

    对于每个点可以发现,当这个点被num个线段覆盖时,这个点就会被选C(num,k)次,ans=∑C(num,k);
    但是区间很大,点的数目居多,所以不可能一个点一个点的这样算,可以发现,相邻的点如果被相同数目的线段覆盖,那么这些点就可以合并成一个区间,所以ans=∑len*C(num,k),len表示这个区间点的个数;看这个点被覆盖了多少次可以采用跟树状数组那样的方法,左右端点+-1;

    AC代码:

    //#include <bits/stdc++.h>
    #include <vector>
    #include <iostream>
    #include <queue>
    #include <cmath>
    #include <map>
    #include <cstring>
    #include <algorithm>
    #include <cstdio>
    
    using namespace std;
    #define For(i,j,n) for(int i=j;i<=n;i++)
    #define Riep(n) for(int i=1;i<=n;i++)
    #define Riop(n) for(int i=0;i<n;i++)
    #define Rjep(n) for(int j=1;j<=n;j++)
    #define Rjop(n) for(int j=0;j<n;j++)
    #define mst(ss,b) memset(ss,b,sizeof(ss));
    typedef  long long LL;
    template<class T> void read(T&num) {
        char CH; bool F=false;
        for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
        for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
        F && (num=-num);
    }
    int stk[70], tp;
    template<class T> inline void print(T p) {
        if(!p) { puts("0"); return; }
        while(p) stk[++ tp] = p%10, p/=10;
        while(tp) putchar(stk[tp--] + '0');
        putchar('
    ');
    }
    
    const LL mod=1e9+7;
    const double PI=acos(-1.0);
    const LL inf=1e18;
    const int N=2e5+10;
    const int maxn=1005;
    const double eps=1e-10;
    
    int n,k,l[N],r[N];
    LL dp[N];
    
    map<int,int>mp;
    
    LL pow_mod(int x,LL y)
    {
        LL s=1,base=(LL)x;
        while(y)
        {
            if(y&1)s=s*base%mod;
            base=base*base%mod;
            y>>=1;
        }
        return s;
    }
    
    void Init()
    {
        dp[k]=1;
        For(i,k+1,N)
        {
            LL x=i,temp=pow_mod(x-k,mod-2);
            dp[i]=dp[i-1]*x%mod*temp%mod;
        }
    }
    vector<int>ve;
    int main()
    {
        read(n);read(k);
        Init();
        For(i,1,n)
        {
            read(l[i]);
            mp[l[i]-1]++;
            ve.push_back(l[i]-1);
            read(r[i]);
            mp[r[i]]--;
            ve.push_back(r[i]);
        }
        sort(ve.begin(),ve.end());
        LL ans=0;
        int num=0,prepo=-1e9-10;
        int w=ve.size();
       for(int i=0;i<w;i++)
        {
            int tempo=ve[i],len=tempo-prepo;
            if(num>=k)ans=ans+dp[num]*(LL)len%mod,ans%=mod;
           if(prepo!=tempo) prepo=tempo,num+=mp[tempo];
        }
        cout<<ans<<"
    ";
            return 0;
    }



  • 相关阅读:
    iOS内购开发(也许是最全的介绍)
    React Native 学习(三)之 FlexBox 布局
    React Native组件解析(二)之Text
    苹果开发者账号(个人、公司、企业)的区别
    React Native学习(二)之View
    搭建React Native开发环境
    iOS 提交AppStore不出现构建的版本
    Python使用Mysql过程中一些错误
    数据分析之漏斗模型
    项目管理之敏捷方式(我们的方式)
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5656034.html
Copyright © 2011-2022 走看看