zoukankan      html  css  js  c++  java
  • codeforces 459E E. Pashmak and Graph(dp+sort)

    题目链接:

    E. Pashmak and Graph

    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Pashmak's homework is a problem about graphs. Although he always tries to do his homework completely, he can't solve this problem. As you know, he's really weak at graph theory; so try to help him in solving the problem.

    You are given a weighted directed graph with n vertices and m edges. You need to find a path (perhaps, non-simple) with maximum number of edges, such that the weights of the edges increase along the path. In other words, each edge of the path must have strictly greater weight than the previous edge in the path.

    Help Pashmak, print the number of edges in the required path.

    Input

    The first line contains two integers nm (2 ≤ n ≤ 3·105; 1 ≤ m ≤ min(n·(n - 1), 3·105)). Then, m lines follows. The i-th line contains three space separated integers: uiviwi (1 ≤ ui, vi ≤ n; 1 ≤ wi ≤ 105) which indicates that there's a directed edge with weight wi from vertex ui to vertex vi.

    It's guaranteed that the graph doesn't contain self-loops and multiple edges.

    Output

    Print a single integer — the answer to the problem.

    Examples
    input
    3 3
    1 2 1
    2 3 1
    3 1 1
    output
    1
    input
    3 3
    1 2 1
    2 3 2
    3 1 3
    output
    3
    input
    6 7
    1 2 1
    3 2 5
    2 4 2
    2 5 2
    2 6 9
    5 4 3
    4 3 4
    output
    6

    题意:

    一个有向图,找出一条最长的路径,这条路径上的每条边权重都严格递增;问最长的长度是多少;

    思路:

    按边的权重排序,排完后把一层一层的更新;

    AC代码:

    #include <bits/stdc++.h>
    /*
    #include <vector>
    #include <iostream>
    #include <queue>
    #include <cmath>
    #include <map>
    #include <cstring>
    #include <algorithm>
    #include <cstdio>
    */
    using namespace std;
    #define For(i,j,n) for(int i=j;i<=n;i++)
    #define Riep(n) for(int i=1;i<=n;i++)
    #define Riop(n) for(int i=0;i<n;i++)
    #define Rjep(n) for(int j=1;j<=n;j++)
    #define Rjop(n) for(int j=0;j<n;j++)
    #define mst(ss,b) memset(ss,b,sizeof(ss));
    typedef  long long LL;
    template<class T> void read(T&num) {
        char CH; bool F=false;
        for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
        for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
        F && (num=-num);
    }
    int stk[70], tp;
    template<class T> inline void print(T p) {
        if(!p) { puts("0"); return; }
        while(p) stk[++ tp] = p%10, p/=10;
        while(tp) putchar(stk[tp--] + '0');
        putchar('
    ');
    }
    
    const LL mod=1e9+7;
    const double PI=acos(-1.0);
    const LL inf=1e18;
    const int N=3e5+10;
    const int maxn=1005;
    const double eps=1e-10;
    
    int dis[N],temp[N],le[N];
    /*
    struct Edge
    {
        int from,to,va,next;
    }edge[N];
    void add_edge(int s,int e,int w)
    {
        edge[cnt].next=head[s];
        edge[cnt].from=s;
        edge[cnt].to=e;
        edge[cnt].va=w;
        head[s]=cnt++;
    }*/
    struct PO
    {
        int u,v,w;
    }po[N];
    int cmp(PO x,PO y)
    {
        return x.w<y.w;
    }
    /*
    void dfs(int cur,int fa,int wi)
    {
        cout<<cur<<" "<<fa<<" "<<wi<<" "<<dis[cur]<<"###"<<endl;
        for(int i=head[cur];i!=-1;i=edge[i].next)
        {
            int y=edge[i].to,w=edge[i].va;
            cout<<y<<" "<<w<<"$$$$$"<<endl;
            if(w>wi)
            {
                if(dis[y]<dis[cur]+1)dis[y]=dis[cur]+1,dfs(y,cur,w);
            }
        }
    }*/
    
    int n,m;
    
    
    int main()
    {
    
            read(n);read(m);
            For(i,1,m)
                read(po[i].u),read(po[i].v),read(po[i].w);//add_edge(po[i].u,po[i].v,po[i].w);//add_edge(v,u,w);
    
    
            sort(po+1,po+m+1,cmp);
            int cnt=1;
            le[1]=1;
            For(i,2,m)
            {
                if(po[i].w!=po[i-1].w)
                {
                    le[++cnt]=i;
                }
            }
            le[++cnt]=m+1;
    
    
            for(int j=1;j<=cnt;j++)
            {
                for(int i=le[j];i<le[j+1];i++)
                temp[po[i].v]=max(dis[po[i].u]+1,temp[po[i].v]);
                for(int i=le[j];i<le[j+1];i++)
                dis[po[i].v]=temp[po[i].v];
            }
            int ans=0;
            For(i,1,n)
            {
            ans=max(ans,dis[i]);
            }
            cout<<ans<<"
    ";
            return 0;
    }
  • 相关阅读:
    Java面向对象基本/传参/引用/访问控制/构造器
    二叉树遍历&分治
    Java基础 & 基本数据类型 & String类
    Java面向对象继承/重写/多态
    Java集合基础
    Java面向对象抽象类/接口类/内部类
    你碰我变
    cookie&&localstorage
    父亲的谎话,只有长大后才能听懂……
    CSS的兼容性
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5657918.html
Copyright © 2011-2022 走看看