zoukankan      html  css  js  c++  java
  • hdu-5791 Two(dp)

    题目链接:

    Two

    Time Limit: 2000/1000 MS (Java/Others)    

    Memory Limit: 65536/65536 K (Java/Others)


    Problem Description
    Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
     
    Input
    The input contains multiple test cases.

    For each test case, the first line cantains two integers N,M(1N,M1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
     
    Output
    For each test case, output the answer mod 1000000007.
     
    Sample Input
     
    3 2
    1 2 3
    2 1
    3 2
    1 2 3
    1 2
     
     
    Sample Output
     
    2
    3
     
    题意:
     
    问这两个序列中有多少对子序列相同;
     
    思路:
     
    dp啦,dp[i][j]表示a[1,i]与b[1,j]里面有多少对子序列相同;转移的时候就是看a[i]与b[j]相同不?
    相同的话dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+dp[i-1][j-1]+1;
    不同的话dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
     
    AC代码:
     
    /************************************************
    ┆  ┏┓   ┏┓ ┆   
    ┆┏┛┻━━━┛┻┓ ┆
    ┆┃       ┃ ┆
    ┆┃   ━   ┃ ┆
    ┆┃ ┳┛ ┗┳ ┃ ┆
    ┆┃       ┃ ┆ 
    ┆┃   ┻   ┃ ┆
    ┆┗━┓    ┏━┛ ┆
    ┆  ┃    ┃  ┆      
    ┆  ┃    ┗━━━┓ ┆
    ┆  ┃  AC代马   ┣┓┆
    ┆  ┃           ┏┛┆
    ┆  ┗┓┓┏━┳┓┏┛ ┆
    ┆   ┃┫┫ ┃┫┫ ┆
    ┆   ┗┻┛ ┗┻┛ ┆      
    ************************************************ */ 
     
     
    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #include <cmath>
    #include <bits/stdc++.h>
    #include <stack>
     
    using namespace std;
     
    #define For(i,j,n) for(int i=j;i<=n;i++)
    #define mst(ss,b) memset(ss,b,sizeof(ss));
     
    typedef  long long LL;
     
    template<class T> void read(T&num) {
        char CH; bool F=false;
        for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
        for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
        F && (num=-num);
    }
    int stk[70], tp;
    template<class T> inline void print(T p) {
        if(!p) { puts("0"); return; }
        while(p) stk[++ tp] = p%10, p/=10;
        while(tp) putchar(stk[tp--] + '0');
        putchar('
    ');
    }
     
    const LL mod=1e9+7;
    const double PI=acos(-1.0);
    const int inf=1e9;
    const int N=1e6+10;
    const int maxn=1e3+14;
    const double eps=1e-8;
    
    int a[maxn],b[maxn];
    LL dp[maxn][maxn];
    
    int main()
    {      
            int n,m;
            while(scanf("%d%d",&n,&m)!=EOF)
            {
                For(i,1,n)read(a[i]);
                For(i,1,m)read(b[i]);
                For(i,1,n)
                {
                    For(j,1,m)
                    {
                        if(a[i]!=b[j])dp[i][j]=(dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+mod)%mod;
                        else dp[i][j]=(dp[i-1][j]+dp[i][j-1]+1)%mod;
                    }
                }
                printf("%lld
    ",dp[n][m]);
            }
            return 0;
    }
    

      

  • 相关阅读:
    Matlab-9:中心差分方法解常微分算例(SOR完整版)
    Matlab-8:松弛迭代法(SOR)
    Matlab-6:解非线性方程组newton迭代法
    Matlab-5:牛顿迭代法工具箱
    javascript学习笔记--经典继承、组合继承、原型式继承、寄生继承以及寄生组合继承
    爬取微信文章代码
    吴恩达“机器学习”——学习笔记八
    吴恩达“机器学习”——学习笔记七
    吴恩达“机器学习”——学习笔记六
    吴恩达“机器学习”——学习笔记五
  • 原文地址:https://www.cnblogs.com/zhangchengc919/p/5732224.html
Copyright © 2011-2022 走看看