题目链接:
Two
Time Limit: 2000/1000 MS (Java/Others)
Memory Limit: 65536/65536 K (Java/Others)
Problem Description
Alice gets two sequences A and B. A easy problem comes. How many pair of sequence A' and sequence B' are same. For example, {1,2} and {1,2} are same. {1,2,4} and {1,4,2} are not same. A' is a subsequence of A. B' is a subsequence of B. The subsequnce can be not continuous. For example, {1,1,2} has 7 subsequences {1},{1},{2},{1,1},{1,2},{1,2},{1,1,2}. The answer can be very large. Output the answer mod 1000000007.
Input
The input contains multiple test cases.
For each test case, the first line cantains two integers N,M(1≤N,M≤1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
For each test case, the first line cantains two integers N,M(1≤N,M≤1000). The next line contains N integers. The next line followed M integers. All integers are between 1 and 1000.
Output
For each test case, output the answer mod 1000000007.
Sample Input
3 2
1 2 3
2 1
3 2
1 2 3
1 2
Sample Output
2
3
题意:
问这两个序列中有多少对子序列相同;
思路:
dp啦,dp[i][j]表示a[1,i]与b[1,j]里面有多少对子序列相同;转移的时候就是看a[i]与b[j]相同不?
相同的话dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+dp[i-1][j-1]+1;
不同的话dp[i][j]=dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1];
AC代码:
/************************************************
┆ ┏┓ ┏┓ ┆
┆┏┛┻━━━┛┻┓ ┆
┆┃ ┃ ┆
┆┃ ━ ┃ ┆
┆┃ ┳┛ ┗┳ ┃ ┆
┆┃ ┃ ┆
┆┃ ┻ ┃ ┆
┆┗━┓ ┏━┛ ┆
┆ ┃ ┃ ┆
┆ ┃ ┗━━━┓ ┆
┆ ┃ AC代马 ┣┓┆
┆ ┃ ┏┛┆
┆ ┗┓┓┏━┳┓┏┛ ┆
┆ ┃┫┫ ┃┫┫ ┆
┆ ┗┻┛ ┗┻┛ ┆
************************************************ */
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <bits/stdc++.h>
#include <stack>
using namespace std;
#define For(i,j,n) for(int i=j;i<=n;i++)
#define mst(ss,b) memset(ss,b,sizeof(ss));
typedef long long LL;
template<class T> void read(T&num) {
char CH; bool F=false;
for(CH=getchar();CH<'0'||CH>'9';F= CH=='-',CH=getchar());
for(num=0;CH>='0'&&CH<='9';num=num*10+CH-'0',CH=getchar());
F && (num=-num);
}
int stk[70], tp;
template<class T> inline void print(T p) {
if(!p) { puts("0"); return; }
while(p) stk[++ tp] = p%10, p/=10;
while(tp) putchar(stk[tp--] + '0');
putchar('
');
}
const LL mod=1e9+7;
const double PI=acos(-1.0);
const int inf=1e9;
const int N=1e6+10;
const int maxn=1e3+14;
const double eps=1e-8;
int a[maxn],b[maxn];
LL dp[maxn][maxn];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
For(i,1,n)read(a[i]);
For(i,1,m)read(b[i]);
For(i,1,n)
{
For(j,1,m)
{
if(a[i]!=b[j])dp[i][j]=(dp[i-1][j]+dp[i][j-1]-dp[i-1][j-1]+mod)%mod;
else dp[i][j]=(dp[i-1][j]+dp[i][j-1]+1)%mod;
}
}
printf("%lld
",dp[n][m]);
}
return 0;
}