zoukankan      html  css  js  c++  java
  • 面试必会之HashMap源码分析

    声明:本文章原出处为https://mp.weixin.qq.com/s/vRvMvNktoDSQKMMlnj5T0g,本人觉得写的很详细,分享出来,共同学习!

    简介

    HashMap最早出现在JDK1.2中,底层基于散列算法实现。HashMap 允许 null 键和 null 值,是非线程安全类,在多线程环境下可能会存在问题。

    1.8版本的HashMap数据结构:

    为什么有的是链表有的是红黑树?

    默认链表长度大于8时转为树

    结构

    Node是HhaspMap中的一个静态内部类 :

    //Node是单向链表,实现了Map.Entry接口
    static class Node<K,V> implements Map.Entry<K,V> {
        final int hash;
        final K key;
        V value;
        Node<K,V> next;
        //构造函数
        Node(int hash, K key, V value, Node<K,V> next) {
            this.hash = hash;
            this.key = key;
            this.value = value;
            this.next = next;
        }
    
        // getter and setter ... toString ...
        public final K getKey()        { return key; }
        public final V getValue()      { return value; }
        public final String toString() { return key + "=" + value; }
    
        public final int hashCode() {
            return Objects.hashCode(key) ^ Objects.hashCode(value);
        }
    
        public final V setValue(V newValue) {
            V oldValue = value;
            value = newValue;
            return oldValue;
        }
    
        public final boolean equals(Object o) {
            if (o == this)
                return true;
            if (o instanceof Map.Entry) {
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
                if (Objects.equals(key, e.getKey()) &&
                    Objects.equals(value, e.getValue()))
                    return true;
            }
            return false;
        }
    }
    

    TreeNode 是红黑树的数据结构。

    static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
        TreeNode<K,V> parent;  // red-black tree links
        TreeNode<K,V> left;
        TreeNode<K,V> right;
        TreeNode<K,V> prev;    // needed to unlink next upon deletion
        boolean red;
        TreeNode(int hash, K key, V val, Node<K,V> next) {
            super(hash, key, val, next);
        }
    
        /**
         * Returns root of tree containing this node.
         */
        final TreeNode<K,V> root() {
            for (TreeNode<K,V> r = this, p;;) {
                if ((p = r.parent) == null)
                    return r;
                r = p;
            }
        }
    

    类定义

    public class HashMap<K,V> extends AbstractMap<K,V>
        implements Map<K,V>, Cloneable, Serializable 
    

    变量

    /**
     * 默认初始容量16(必须是2的幂次方)
     */
    static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;
    
    /**
     * 最大容量,2的30次方
     */
    static final int MAXIMUM_CAPACITY = 1 << 30;
    
    /**
     * 默认加载因子,用来计算threshold
     */
    static final float DEFAULT_LOAD_FACTOR = 0.75f;
    
    /**
     * 链表转成树的阈值,当桶中链表长度大于8时转成树 
       threshold = capacity * loadFactor
     */
    static final int TREEIFY_THRESHOLD = 8;
    
    /**
     * 进行resize操作时,若桶中数量少于6则从树转成链表
     */
    static final int UNTREEIFY_THRESHOLD = 6;
    
    /**
     * 桶中结构转化为红黑树对应的table的最小大小
    
     当需要将解决 hash 冲突的链表转变为红黑树时,
     需要判断下此时数组容量,
     若是由于数组容量太小(小于 MIN_TREEIFY_CAPACITY )
     导致的 hash 冲突太多,则不进行链表转变为红黑树操作,
     转为利用 resize() 函数对 hashMap 扩容
     */
    static final int MIN_TREEIFY_CAPACITY = 64;
    /**
     保存Node<K,V>节点的数组
     该表在首次使用时初始化,并根据需要调整大小。 分配时,
     长度始终是2的幂。
     */
    transient Node<K,V>[] table;
    
    /**
     * 存放具体元素的集
     */
    transient Set<Map.Entry<K,V>> entrySet;
    
    /**
     * 记录 hashMap 当前存储的元素的数量
     */
    transient int size;
    
    /**
     * 每次更改map结构的计数器
     */
    transient int modCount;
    
    /**
     * 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
     */
    int threshold;
    
    /**
     * 负载因子:要调整大小的下一个大小值(容量*加载因子)。
     */
    final float loadFactor;
    

    构造方法

    /**
     * 传入初始容量大小,使用默认负载因子值 来初始化HashMap对象
     */
    public HashMap(int initialCapacity) {
        this(initialCapacity, DEFAULT_LOAD_FACTOR);
    }
    
    /**
     * 默认容量和负载因子
     */
    public HashMap() {
        this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
    }
    /**
     * 传入初始容量大小和负载因子 来初始化HashMap对象
     */
    public HashMap(int initialCapacity, float loadFactor) {
        // 初始容量不能小于0,否则报错
        if (initialCapacity < 0)
            throw new IllegalArgumentException("Illegal initial capacity: " +
                                               initialCapacity);
        // 初始容量不能大于最大值,否则为最大值                                       
        if (initialCapacity > MAXIMUM_CAPACITY)
            initialCapacity = MAXIMUM_CAPACITY;
        //负载因子不能小于或等于0,不能为非数字    
        if (loadFactor <= 0 || Float.isNaN(loadFactor))
            throw new IllegalArgumentException("Illegal load factor: " +
                                               loadFactor);
        // 初始化负载因子                                       
        this.loadFactor = loadFactor;
        // 初始化threshold大小
        this.threshold = tableSizeFor(initialCapacity);
    }
    
    /**
     * 找到大于或等于 cap 的最小2的整数次幂的数。
     */
    static final int tableSizeFor(int cap) {
        int n = cap - 1;
        n |= n >>> 1;
        n |= n >>> 2;
        n |= n >>> 4;
        n |= n >>> 8;
        n |= n >>> 16;
        return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
    }
    

    tableSizeFor方法详解:

    用位运算找到大于或等于 cap 的最小2的整数次幂的数。比如10,则返回16

    1. 让cap-1再赋值给n的目的是使得找到的目标值大于或等于原值。例如二进制0100,十进制是4,若不减1而直接操作,答案是0001 0000十进制是16,明显不符合预期。

    2. 对n右移1位:001xx…xxx,再位或:011xx…xxx

    3. 对n右移2位:00011…xxx,再位或:01111…xxx

    4. 对n右移4位…

    5. 对n右移8位…

    6. 对n右移16位,因为int最大就2^32所以移动1、2、4、8、16位并取位或,会将最高位的1后面的位全变为1。

    7. 再让结果n+1,即得到了2的整数次幂的值了。

    附带一个实例:

    loadFactor 负载因子

    对于 HashMap 来说,负载因子是一个很重要的参数,该参数反应了 HashMap 桶数组的使用情况。通过调节负载因子,可使 HashMap 时间和空间复杂度上有不同的表现。

    当我们调低负载因子时,HashMap 所能容纳的键值对数量变少。扩容时,重新将键值对存储新的桶数组里,键的键之间产生的碰撞会下降,链表长度变短。此时,HashMap 的增删改查等操作的效率将会变高,这里是典型的拿空间换时间。

    相反,如果增加负载因子(负载因子可以大于1),HashMap 所能容纳的键值对数量变多,空间利用率高,但碰撞率也高。这意味着链表长度变长,效率也随之降低,这种情况是拿时间换空间。至于负载因子怎么调节,这个看使用场景了。

    一般情况下,我们用默认值就可以了。大多数情况下0.75在时间跟空间代价上达到了平衡所以不建议修改。

    查找

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }
    // 获取hash值
    static final int hash(Object key) {
        int h;
        // 拿到key的hash值后与其五符号右移16位取与
        // 通过这种方式,让高位数据与低位数据进行异或,以此加大低位信息的随机性,变相的让高位数据参与到计算中。
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    
    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; 
        Node<K,V> first, e; 
        int n; K k;
        // 定位键值对所在桶的位置
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
            // 判断桶中第一项(数组元素)相等
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 桶中不止一个结点
            if ((e = first.next) != null) {
                // 是否是红黑树,是的话调用getTreeNode方法
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 不是红黑树的话,在链表中遍历查找    
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
    

    注意:

    1. HashMap的hash算法(hash()方法)。

    2. (n - 1) &amp; hash等价于对 length 取余。

    添加

    public V put(K key, V value) {
        // 调用hash(key)方法来计算hash 
        return putVal(hash(key), key, value, false, true);
    }
    
    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; 
        Node<K,V> p; 
        int n, i;
        // 容量初始化:当table为空,则调用resize()方法来初始化容器
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        //确定元素存放在哪个桶中,桶为空,新生成结点放入桶中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            // 比较桶中第一个元素(数组中的结点)的hash值相等,key相等
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                //如果键的值以及节点 hash 等于链表中的第一个键值对节点时,则将 e 指向该键值对
                e = p;
            // 如果桶中的引用类型为 TreeNode,则调用红黑树的插入方法
            else if (p instanceof TreeNode)
                // 放入树中
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                //对链表进行遍历,并统计链表长度
                for (int binCount = 0; ; ++binCount) {
                    // 到达链表的尾部
                    if ((e = p.next) == null) {
                        //在尾部插入新结点
                        p.next = newNode(hash, key, value, null);
                        // 如果结点数量达到阈值,转化为红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 判断链表中结点的key值与插入的元素的key值是否相等
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            //判断要插入的键值对是否存在 HashMap 中
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // onlyIfAbsent 表示是否仅在 oldValue 为 null 的情况下更新键值对的值
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;
        // 键值对数量超过阈值时,则进行扩容
        if (++size > threshold)
            resize();
        afterNodeInsertion(evict);
        return null;
    }
    

    事实上,new HashMap();完成后,如果没有put操作,是不会分配存储空间的。

    1. 当桶数组 table 为空时,通过扩容的方式初始化 table

    2. 查找要插入的键值对是否已经存在,存在的话根据条件判断是否用新值替换旧值

    3. 如果不存在,则将键值对链入链表中,并根据链表长度决定是否将链表转为红黑树

    4. 判断键值对数量是否大于阈值,大于的话则进行扩容操作

    扩容机制

    在 HashMap 中,桶数组的长度均是2的幂,阈值大小为桶数组长度与负载因子的乘积。当 HashMap 中的键值对数量超过阈值时,进行扩容。

    HashMap 按当前桶数组长度的2倍进行扩容,阈值也变为原来的2倍(如果计算过程中,阈值溢出归零,则按阈值公式重新计算)。扩容之后,要重新计算键值对的位置,并把它们移动到合适的位置上去。

    final Node<K,V>[] resize() {
        // 拿到数组桶
        Node<K,V>[] oldTab = table;
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        int oldThr = threshold;
        int newCap, newThr = 0;
        // 如果数组桶的容量大与0
        if (oldCap > 0) {
            // 如果比最大值还大,则赋值为最大值
            if (oldCap >= MAXIMUM_CAPACITY) {
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            // 如果扩容后小于最大值 而且 旧数组桶大于初始容量16, 阈值左移1(扩大2倍)
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)
                newThr = oldThr << 1; // double threshold
        }
        // 如果数组桶容量<=0 且 旧阈值 >0
        else if (oldThr > 0) // initial capacity was placed in threshold
            // 新容量=旧阈值
            newCap = oldThr;
        // 如果数组桶容量<=0 且 旧阈值 <=0
        else {               // zero initial threshold signifies using defaults
            // 新容量=默认容量
            newCap = DEFAULT_INITIAL_CAPACITY;
            // 新阈值= 负载因子*默认容量
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 如果新阈值为0
        if (newThr == 0) {
            // 重新计算阈值
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        // 更新阈值
        threshold = newThr;
        @SuppressWarnings({"rawtypes","unchecked"})
            // 创建新数组
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        // 覆盖数组桶    
        table = newTab;
        // 如果旧数组桶不是空,则遍历桶数组,并将键值对映射到新的桶数组中
        if (oldTab != null) {
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 如果是红黑树
                    else if (e instanceof TreeNode)
                        // 重新映射时,需要对红黑树进行拆分
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    else { // preserve order
                        // 如果不是红黑树,则按链表处理
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        // 遍历链表,并将链表节点按原顺序进行分组
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        // 将分组后的链表映射到新桶中
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        return newTab;
    }
    

    整体步骤:

    1. 计算新桶数组的容量 newCap 和新阈值 newThr

    2. 根据计算出的 newCap 创建新的桶数组,桶数组 table 也是在这里进行初始化的

    3. 将键值对节点重新映射到新的桶数组里。如果节点是 TreeNode 类型,则需要拆分红黑树。如果是普通节点,则节点按原顺序进行分组。

    总结起来,一共有三种扩容方式

    1. 使用默认构造方法初始化HashMap。从前文可以知道HashMap在一开始初始化的时候会返回一个空的table,并且thershold为0。因此第一次扩容的容量为默认值DEFAULT_INITIAL_CAPACITY也就是16。同时threshold = DEFAULT_INITIAL_CAPACITY * DEFAULT_LOAD_FACTOR = 12

    2. 指定初始容量的构造方法初始化HashMap。那么从下面源码可以看到初始容量会等于threshold,接着threshold = 当前的容量(threshold) * DEFAULT_LOAD_FACTOR

    3. HashMap不是第一次扩容。如果HashMap已经扩容过的话,那么每次table的容量以及threshold量为原有的两倍。

    细心点的人会很好奇,为什么要判断loadFactor为0呢?

    loadFactor小数位为 0,整数位可被2整除且大于等于8时,在某次计算中就可能会导致 newThr 溢出归零。

    疑问和进阶

    1. JDK1.7是基于数组+单链表实现(为什么不用双链表)

    首先,用链表是为了解决hash冲突。

    单链表能实现为什么要用双链表呢?(双链表需要更大的存储空间)

    2. 为什么要用红黑树,而不用平衡二叉树?

    插入效率比平衡二叉树高,查询效率比普通二叉树高。所以选择性能相对折中的红黑树。

    3. 重写对象的Equals方法时,要重写hashCode方法,为什么?跟HashMap有什么关系?

    equals与hashcode间的关系:

    1. 如果两个对象相同(即用equals比较返回true),那么它们的hashCode值一定要相同;

    2. 如果两个对象的hashCode相同,它们并不一定相同(即用equals比较返回false)

    因为在 HashMap 的链表结构中遍历判断的时候,特定情况下重写的 equals 方法比较对象是否相等的业务逻辑比较复杂,循环下来更是影响查找效率。所以这里把 hashcode 的判断放在前面,只要 hashcode 不相等就玩儿完,不用再去调用复杂的 equals 了。很多程度地提升 HashMap 的使用效率。

    所以重写 hashcode 方法是为了让我们能够正常使用 HashMap 等集合类,因为 HashMap 判断对象是否相等既要比较 hashcode 又要使用 equals 比较。而这样的实现是为了提高 HashMap 的效率。

    附上源码图:

    4. HashMap为什么不直接使用对象的原始hash值呢?

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
    

    我们发现,HashMap的哈希值是通过上面的方式获取,而不是通过key.hashCode()方法获取。

    原因:

    通过移位和异或运算,可以让 hash 变得更复杂,进而影响 hash 的分布性。

    5. 既然红黑树那么好,为啥hashmap不直接采用红黑树,而是当大于8个的时候才转换红黑树?

    因为红黑树需要进行左旋,右旋操作, 而单链表不需要。

    以下都是单链表与红黑树结构对比。

    如果元素小于8个,查询成本高,新增成本低。

    如果元素大于8个,查询成本低,新增成本高。

    至于为什么选数字8,是大佬折中衡量的结果-.-,就像loadFactor默认值0.75一样

  • 相关阅读:
    java 后台校验格式
    spring AOP 实现事务和主从读写分离
    【Day5】项目实战.CSDN热门文章爬取
    【Day5】3.反爬策略之模拟登录
    【Day5】2.反爬策略之代理IP
    【Day5】1.Request对象之Header伪装策略
    【Day4】5.Request对象之Http Post请求案例分析
    【Day4】4.Request对象之Get请求与URL编码
    【Day4】3.urllib模块使用案例
    【Day4】2.详解Http请求协议
  • 原文地址:https://www.cnblogs.com/zhangguixing/p/10858120.html
Copyright © 2011-2022 走看看