zoukankan      html  css  js  c++  java
  • J. Leader in Tree Land

    #include <iostream>
    #define maxn 1005
    #define mod 1000000007
    using namespace std;
    int cas,t = 1,road[maxn][maxn],n,k,ra,rb;
    long long A[maxn],dp[maxn][maxn],size[maxn];       /*dp[i][j]表示从1到i节点有j个节点是其字数的最大值*/
    void init()
    {
        int i,j;
        A[0] = 1;
        for(i = 1;i < maxn;i ++)
        {
            A[i] =  A[i-1] * i % mod;
        }
    }
    void init1()
    {
        int i,j;
        for(i = 1;i <= n;i ++)
        {
            size[i] = 1;
            for(j = 1;j <= n;j ++)
                dp[i][j] = road[i][j] = 0;
        }
    }
    //*逆元代替分数*/
    long long fast_pow(long long x, int n) {
        long long ret = 1;
        while (n) {
            if (n&1) ret = ret * x % mod;
            n >>= 1;
            x = x * x % mod;
        }
        return ret;
    }
    
    long long inv(long long x) {
        return fast_pow(x, mod-2);
    }
    
    /*得到以每个点为根的子树的节点数*/
    void LookRoad(int r)
    {
        int i;
        for(i = 1;i <= n;i ++)
        {
            if(road[r][i])
            {
                road[r][i] = road[i][r] = 0;
                LookRoad(i);
                size[r] += size[i];
            }
        }
    }
    int main()
    {
        cin >> cas;
        init();                                     
        while(cas --)
        {
            cin >> n >> k;
            init1();
            for(int i = 1;i < n;i ++)
            {
                cin >> ra >> rb;
                road[ra][rb] = road[rb][ra] = 1;
            }
            LookRoad(1);
            /*逆元代替分数*/
            dp[0][0] = 1;
            dp[0][1] = 0;
            for(int i = 1;i <= n;i ++)
            {
                long long p,q;
                p = inv(size[i]);                                     /*该点是最大点的概率*/
                q = (size[i]-1)*p%mod;                                /*该点不是最大点的概率*/
                //cout << p << endl;
               // cout << q << endl;
                dp[i][0] = dp[i-1][0] * q % mod;
                for(int j = 1;j <= i;j ++)
                {
                        dp[i][j] = (dp[i-1][j-1]*p%mod + dp[i-1][j]*q%mod)%mod;
                }
            }
            long long ans;
            ans = dp[n][k] * A[n] % mod;
            cout << "Case #" << t ++ << ": " << ans << endl;
        }
        return 0;
    }

     小结:逆元替代分数的这种做法还没有理解。

  • 相关阅读:
    MonoRail学习-介绍篇(一)
    使用"_svn"替代".svn"的转换脚本
    Silverlight 4之ComboBox用法
    MD5 Algorithm
    子集算法的一个简单实现
    搜狗浏览器2.0正式版使用体验
    我做的抓屏软件
    WPF version of IPMessager
    Base64 Encode Decode Algorithm
    Origami Art
  • 原文地址:https://www.cnblogs.com/zhangjialu2015/p/5271380.html
Copyright © 2011-2022 走看看