典型的背包+容斥
首先,考虑如果没有个数的限制,那么就是一个完全背包,所以先跑一个完全背包,求出没有个数限制的方案数即可
接下来,如果有个数的限制,那么我们就要利用一些容斥的思想:没有1个超过限制的方案=至少0个超过限制-至少1个超过限制+至少2个超过限制-至少3个超过限制+至少4个超过限制
所以我们用2进制数枚举谁超过了限制,然后加入上面的容斥即可
其中:如果第i种硬币的限制为ni,那么如果i要求超过限制,那么至少要用ni+1个,所以i超过限制的方案数为f[s-(ni+1)ci](f[s]为全方案数)
#include <cstdio>
#include <cmath>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <queue>
#include <stack>
#define ll long long
using namespace std;
ll dp[100005];
int c[5];
int l[5];
int q;
int cot(int sit)
{
int cnt=0;
if(sit&1)
{
cnt++;
}
if(sit&2)
{
cnt++;
}
if(sit&4)
{
cnt++;
}
if(sit&8)
{
cnt++;
}
return cnt;
}
int main()
{
for(int i=1;i<=4;i++)
{
scanf("%d",&c[i]);
}
dp[0]=1;
for(int j=1;j<=4;j++)
{
for(int i=1;i<=100000;i++)
{
if(i>=c[j])
{
dp[i]+=dp[i-c[j]];
}
}
}
scanf("%d",&q);
while(q--)
{
for(int i=1;i<=4;i++)
{
scanf("%d",&l[i]);
}
int s;
scanf("%d",&s);
ll ans=0;
for(int i=0;i<16;i++)
{
int temp=s;
if(cot(i)&1)
{
for(int j=0;j<4;j++)
{
if((1<<j)&i)
{
temp-=(l[j+1]+1)*c[j+1];
}
}
if(temp<0)
{
continue;
}else
{
ans-=dp[temp];
}
}else
{
for(int j=0;j<4;j++)
{
if((1<<j)&i)
{
temp-=(l[j+1]+1)*c[j+1];
}
}
if(temp<0)
{
continue;
}else
{
ans+=dp[temp];
}
}
}
printf("%lld
",ans);
}
return 0;
}