zoukankan      html  css  js  c++  java
  • Hdu 1013 Digital Roots

    Digital Roots

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 78669    Accepted Submission(s): 24590

    Problem Description

    The digital root of a positive integer is found by summing the digits of the integer. If the resulting value is a single digit then that digit is the digital root. If the resulting value contains two or more digits, those digits are summed and the process is repeated. This is continued as long as necessary to obtain a single digit.

    For example, consider the positive integer 24. Adding the 2 and the 4 yields a value of 6. Since 6 is a single digit, 6 is the digital root of 24. Now consider the positive integer 39. Adding the 3 and the 9 yields 12. Since 12 is not a single digit, the process must be repeated. Adding the 1 and the 2 yeilds 3, a single digit and also the digital root of 39.

    Input

    The input file will contain a list of positive integers, one per line. The end of the input will be indicated by an integer value of zero.

    Output

    For each integer in the input, output its digital root on a separate line of the output.

    Sample Input

    24

    39

    0

    Sample Output

    6

    3

    #include<stdio.h>
    #include<string.h>int main()
    {
        while(1)
        {
            char c[1000];
            scanf("%s",c);
            if(strcmp(c,"0")==0)break;
            int i,sum=0;
            for(i=0;i<strlen(c);i++)
                sum+=c[i]-'0';
            while(sum>9)
                sum=sum/10+sum%10;
            printf("%d
    ",sum);
        }
        return 0;
    }     
    

      

  • 相关阅读:
    堆排序
    conda 安装pytorch
    Dev GridControl GridView常用属性
    java 同步调用和异步调用
    spring Boot 整合 Memcached (含 windows 安装)
    spring Boot 整合 Elasticsearch
    windows 下安装 elasticsearch
    代理模式---Cglib动态代理
    代理模式---JDK动态代理
    代理模式---静态代理
  • 原文地址:https://www.cnblogs.com/zhangliu/p/7057787.html
Copyright © 2011-2022 走看看