zoukankan      html  css  js  c++  java
  • Spark Standalone Mode 单机启动Spark -- 分布式计算系统spark学习(一)

    spark是个啥?

    Spark是一个通用的并行计算框架,由UCBerkeley的AMP实验室开发。

    Spark和Hadoop有什么不同呢?
    Spark是基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法。
     
    Spark的适用场景
    Spark是基于内存的迭代计算框架,适用于需要多次操作特定数据集的应用场合。需要反复操作的次数越多,所需读取的数据量越大,受益越大,数据量小但是计算密集度较大的场合,受益就相对较小
    由于RDD的特性,Spark不适用那种异步细粒度更新状态的应用,例如web服务的存储或者是增量的web爬虫和索引。就是对于那种增量修改的应用模型不适合。
    总的来说Spark的适用面比较广泛且比较通用。

    运行模式
    • 本地模式
    • Standalone模式
    • Mesoes模式
    • yarn模式
     
    我们来看看Standalone模式怎么运行。

    1.下载安装

    http://spark.apache.org/downloads.html

    这里可以选择下载源码编译,或者下载已经编译好的程序(因为spark是运行在JVM上面,也可以说是跨平台的),这里是直接下载可执行程序。

    Chose a package type: Pre-built for Hadoop 2.4 and later 。

    解压这个 spark-1.3.0-bin-hadoop2.4.tgz 即可。

    PS:你需要安装java运行环境

    ~/project/spark-1.3.0-bin-hadoop2.4 $java -version
    java version "1.8.0_25"
    Java(TM) SE Runtime Environment (build 1.8.0_25-b17)
    Java HotSpot(TM) 64-Bit Server VM (build 25.25-b02, mixed mode)

    2.目录分布

    sbin目录是各种启动命令

    ~/project/spark-1.3.0-bin-hadoop2.4 $tree sbin/

    sbin/

    ├── slaves.sh

    ├── spark-config.sh

    ├── spark-daemon.sh

    ├── spark-daemons.sh

    ├── start-all.sh

    ├── start-history-server.sh

    ├── start-master.sh

    ├── start-slave.sh

    ├── start-slaves.sh

    ├── start-thriftserver.sh

    ├── stop-all.sh

    ├── stop-history-server.sh

    ├── stop-master.sh

    ├── stop-slaves.sh

    └── stop-thriftserver.sh

     

    conf目录是一些配置模板: 

    ~/project/spark-1.3.0-bin-hadoop2.4 $tree conf/

    conf/

    ├── fairscheduler.xml.template

    ├── log4j.properties.template

    ├── metrics.properties.template

    ├── slaves.template

    ├── spark-defaults.conf.template

    └── spark-env.sh.template

     

    3.启动master 

    ~/project/spark-1.3.0-bin-hadoop2.4 $./sbin/start-master.sh

    starting org.apache.spark.deploy.master.Master, logging to /Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/sbin/../logs/spark-qpzhang-org.apache.spark.deploy.master.Master-1-qpzhangdeMac-mini.local.out

    没有进行任何配置时,采用的都是默认配置,可以看到日志文件的输出:

    ~/project/spark-1.3.0-bin-hadoop2.4 $cat logs/spark-qpzhang-org.apache.spark.deploy.master.Master-1-qpzhangdeMac-mini.local.out 
    
    Spark assembly has been built with Hive, including Datanucleus jars on classpath
    
    Spark Command: /Library/Java/JavaVirtualMachines/jdk1.8.0_25.jdk/Contents/Home/bin/java -cp :/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/sbin/../conf:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/spark-assembly-1.3.0-hadoop2.4.0.jar:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/datanucleus-api-jdo-3.2.6.jar:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/datanucleus-core-3.2.10.jar:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/lib/datanucleus-rdbms-3.2.9.jar -Dspark.akka.logLifecycleEvents=true -Xms512m -Xmx512m org.apache.spark.deploy.master.Master --ip qpzhangdeMac-mini.local --port 7077 --webui-port 8080
    
    ========================================
    
     
    
    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
    
    15/03/20 10:08:09 INFO Master: Registered signal handlers for [TERM, HUP, INT]
    
    15/03/20 10:08:10 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    
    15/03/20 10:08:10 INFO SecurityManager: Changing view acls to: qpzhang
    
    15/03/20 10:08:10 INFO SecurityManager: Changing modify acls to: qpzhang
    
    15/03/20 10:08:10 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
    
    15/03/20 10:08:10 INFO Slf4jLogger: Slf4jLogger started
    
    15/03/20 10:08:10 INFO Remoting: Starting remoting
    
    15/03/20 10:08:10 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077]
    
    15/03/20 10:08:10 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077]
    
    15/03/20 10:08:10 INFO Utils: Successfully started service 'sparkMaster' on port 7077.
    
    15/03/20 10:08:11 INFO Server: jetty-8.y.z-SNAPSHOT
    
    15/03/20 10:08:11 INFO AbstractConnector: Started SelectChannelConnector@qpzhangdeMac-mini.local:6066
    
    15/03/20 10:08:11 INFO Utils: Successfully started service on port 6066.
    
    15/03/20 10:08:11 INFO StandaloneRestServer: Started REST server for submitting applications on port 6066
    
    15/03/20 10:08:11 INFO Master: Starting Spark master at spark://qpzhangdeMac-mini.local:7077
    
    15/03/20 10:08:11 INFO Master: Running Spark version 1.3.0
    
    15/03/20 10:08:11 INFO Server: jetty-8.y.z-SNAPSHOT
    
    15/03/20 10:08:11 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:8080
    
    15/03/20 10:08:11 INFO Utils: Successfully started service 'MasterUI' on port 8080.
    
    15/03/20 10:08:11 INFO MasterWebUI: Started MasterWebUI at http://10.60.215.41:8080
    
    15/03/20 10:08:11 INFO Master: I have been elected leader! New state: ALIVE

    可以看到输出的几条重要的信息,service端口6066,spark端口 7077,ui端口8080等,并且当前node通过选举,确认自己为leader。

    这个时候,我们可以通过 http://localhost:8080/ 来查看到当前master的总体状态。

    4.附加一个worker到master

    ~/project/spark-1.3.0-bin-hadoop2.4 $./bin/spark-class org.apache.spark.deploy.worker.Worker spark://qpzhangdeMac-mini.local:7077
    Spark assembly has been built with Hive, including Datanucleus jars on classpath
    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
    15/03/20 10:33:49 INFO Worker: Registered signal handlers for [TERM, HUP, INT]
    15/03/20 10:33:49 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
    15/03/20 10:33:49 INFO SecurityManager: Changing view acls to: qpzhang
    15/03/20 10:33:49 INFO SecurityManager: Changing modify acls to: qpzhang
    15/03/20 10:33:49 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
    15/03/20 10:33:50 INFO Slf4jLogger: Slf4jLogger started
    15/03/20 10:33:50 INFO Remoting: Starting remoting
    15/03/20 10:33:50 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkWorker@10.60.215.41:60994]
    15/03/20 10:33:50 INFO Remoting: Remoting now listens on addresses: [akka.tcp://sparkWorker@10.60.215.41:60994]
    15/03/20 10:33:50 INFO Utils: Successfully started service 'sparkWorker' on port 60994.
    15/03/20 10:33:50 INFO Worker: Starting Spark worker 10.60.215.41:60994 with 8 cores, 7.0 GB RAM
    15/03/20 10:33:50 INFO Worker: Running Spark version 1.3.0
    15/03/20 10:33:50 INFO Worker: Spark home: /Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4
    15/03/20 10:33:50 INFO Server: jetty-8.y.z-SNAPSHOT
    15/03/20 10:33:50 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:8081
    15/03/20 10:33:50 INFO Utils: Successfully started service 'WorkerUI' on port 8081.
    15/03/20 10:33:50 INFO WorkerWebUI: Started WorkerWebUI at http://10.60.215.41:8081
    15/03/20 10:33:50 INFO Worker: Connecting to master akka.tcp://sparkMaster@qpzhangdeMac-mini.local:7077/user/Master...
    15/03/20 10:33:50 INFO Worker: Successfully registered with master spark://qpzhangdeMac-mini.local:7077

    从日志输出可以看到, worker自己在60994端口工作,然后为自己也起了一个UI,端口是8081,可以通过 http://10.60.215.41:8081查看worker的工作状态,(不得不说,选择的分布式少不了UI监控状态这一块儿了)。

    5.启动spark shell终端:

    ~/project/spark-1.3.0-bin-hadoop2.4 $./bin/spark-shell
    Spark assembly has been built with Hive, including Datanucleus jars on classpath
    log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.MutableMetricsFactory).
    log4j:WARN Please initialize the log4j system properly.
    log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
    Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
    15/03/20 10:43:39 INFO SecurityManager: Changing view acls to: qpzhang
    15/03/20 10:43:39 INFO SecurityManager: Changing modify acls to: qpzhang
    15/03/20 10:43:39 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
    15/03/20 10:43:39 INFO HttpServer: Starting HTTP Server
    15/03/20 10:43:39 INFO Server: jetty-8.y.z-SNAPSHOT
    15/03/20 10:43:39 INFO AbstractConnector: Started SocketConnector@0.0.0.0:61644
    15/03/20 10:43:39 INFO Utils: Successfully started service 'HTTP class server' on port 61644.
    Welcome to
          ____              __
         / __/__  ___ _____/ /__
        _ / _ / _ `/ __/  '_/
       /___/ .__/\_,_/_/ /_/\_   version 1.3.0
          /_/
    
    Using Scala version 2.10.4 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_25)
    Type in expressions to have them evaluated.
    Type :help for more information.
    15/03/20 10:43:43 INFO SparkContext: Running Spark version 1.3.0
    15/03/20 10:43:43 INFO SecurityManager: Changing view acls to: qpzhang
    15/03/20 10:43:43 INFO SecurityManager: Changing modify acls to: qpzhang
    15/03/20 10:43:43 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users with view permissions: Set(qpzhang); users with modify permissions: Set(qpzhang)
    15/03/20 10:43:43 INFO Slf4jLogger: Slf4jLogger started
    15/03/20 10:43:43 INFO Remoting: Starting remoting
    15/03/20 10:43:43 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriver@10.60.215.41:61645]
    15/03/20 10:43:43 INFO Utils: Successfully started service 'sparkDriver' on port 61645.
    15/03/20 10:43:43 INFO SparkEnv: Registering MapOutputTracker
    15/03/20 10:43:44 INFO SparkEnv: Registering BlockManagerMaster
    15/03/20 10:43:44 INFO DiskBlockManager: Created local directory at /var/folders/2l/195zcc1n0sn2wjfjwf9hl9d80000gn/T/spark-5349b1ce-bd10-4f44-9571-da660c1a02a3/blockmgr-a519687e-0cc3-45e4-839a-f93ac8f1397b
    15/03/20 10:43:44 INFO MemoryStore: MemoryStore started with capacity 265.1 MB
    15/03/20 10:43:44 INFO HttpFileServer: HTTP File server directory is /var/folders/2l/195zcc1n0sn2wjfjwf9hl9d80000gn/T/spark-29d81b59-ec6a-4595-b2fb-81bf6b1d3b10/httpd-c572e4a5-ff85-44c9-a21f-71fb34b831e1
    15/03/20 10:43:44 INFO HttpServer: Starting HTTP Server
    15/03/20 10:43:44 INFO Server: jetty-8.y.z-SNAPSHOT
    15/03/20 10:43:44 INFO AbstractConnector: Started SocketConnector@0.0.0.0:61646
    15/03/20 10:43:44 INFO Utils: Successfully started service 'HTTP file server' on port 61646.
    15/03/20 10:43:44 INFO SparkEnv: Registering OutputCommitCoordinator
    15/03/20 10:43:44 INFO Server: jetty-8.y.z-SNAPSHOT
    15/03/20 10:43:44 INFO AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
    15/03/20 10:43:44 INFO Utils: Successfully started service 'SparkUI' on port 4040.
    15/03/20 10:43:44 INFO SparkUI: Started SparkUI at http://10.60.215.41:4040
    15/03/20 10:43:44 INFO Executor: Starting executor ID <driver> on host localhost
    15/03/20 10:43:44 INFO Executor: Using REPL class URI: http://10.60.215.41:61644
    15/03/20 10:43:44 INFO AkkaUtils: Connecting to HeartbeatReceiver: akka.tcp://sparkDriver@10.60.215.41:61645/user/HeartbeatReceiver
    15/03/20 10:43:44 INFO NettyBlockTransferService: Server created on 61651
    15/03/20 10:43:44 INFO BlockManagerMaster: Trying to register BlockManager
    15/03/20 10:43:44 INFO BlockManagerMasterActor: Registering block manager localhost:61651 with 265.1 MB RAM, BlockManagerId(<driver>, localhost, 61651)
    15/03/20 10:43:44 INFO BlockManagerMaster: Registered BlockManager
    15/03/20 10:43:44 INFO SparkILoop: Created spark context..
    Spark context available as sc.
    15/03/20 10:43:45 INFO SparkILoop: Created sql context (with Hive support)..
    SQL context available as sqlContext.
    
    scala> 

    从输出可以看到,又是一堆端口(各种service进行通信,没办法),包含UI, driver等等。warning日志告诉你没有进行config,采用默认。如何进行config,后面再说,先用默认的跑起来玩玩。

    6.通过shell下达命令

    下面我们来执行几个官网上面overview中的几个命令来玩玩。

    scala> val textFile = sc.textFile("README.md")  //加载数据文件,可以是本地路径,也是是HDFS路径或者其它
    15/03/20 10:55:20 INFO MemoryStore: ensureFreeSpace(159118) called with curMem=0, maxMem=278019440
    15/03/20 10:55:20 INFO MemoryStore: Block broadcast_0 stored as values in memory (estimated size 155.4 KB, free 265.0 MB)
    15/03/20 10:55:20 INFO MemoryStore: ensureFreeSpace(22692) called with curMem=159118, maxMem=278019440
    15/03/20 10:55:20 INFO MemoryStore: Block broadcast_0_piece0 stored as bytes in memory (estimated size 22.2 KB, free 265.0 MB)
    15/03/20 10:55:20 INFO BlockManagerInfo: Added broadcast_0_piece0 in memory on localhost:61651 (size: 22.2 KB, free: 265.1 MB)
    15/03/20 10:55:20 INFO BlockManagerMaster: Updated info of block broadcast_0_piece0
    15/03/20 10:55:20 INFO SparkContext: Created broadcast 0 from textFile at <console>:21
    textFile: org.apache.spark.rdd.RDD[String] = README.md MapPartitionsRDD[1] at textFile at <console>:21
    
    scala> textFile.count() //列出文件行数
    15/03/20 10:56:38 INFO FileInputFormat: Total input paths to process : 1
    15/03/20 10:56:38 INFO SparkContext: Starting job: count at <console>:24
    15/03/20 10:56:38 INFO DAGScheduler: Got job 0 (count at <console>:24) with 2 output partitions (allowLocal=false)
    15/03/20 10:56:38 INFO DAGScheduler: Final stage: Stage 0(count at <console>:24)
    15/03/20 10:56:38 INFO DAGScheduler: Parents of final stage: List()
    15/03/20 10:56:38 INFO DAGScheduler: Missing parents: List()
    15/03/20 10:56:38 INFO DAGScheduler: Submitting Stage 0 (README.md MapPartitionsRDD[1] at textFile at <console>:21), which has no missing parents
    15/03/20 10:56:38 INFO MemoryStore: ensureFreeSpace(2632) called with curMem=181810, maxMem=278019440
    15/03/20 10:56:38 INFO MemoryStore: Block broadcast_1 stored as values in memory (estimated size 2.6 KB, free 265.0 MB)
    15/03/20 10:56:38 INFO MemoryStore: ensureFreeSpace(1923) called with curMem=184442, maxMem=278019440
    15/03/20 10:56:38 INFO MemoryStore: Block broadcast_1_piece0 stored as bytes in memory (estimated size 1923.0 B, free 265.0 MB)
    15/03/20 10:56:38 INFO BlockManagerInfo: Added broadcast_1_piece0 in memory on localhost:61651 (size: 1923.0 B, free: 265.1 MB)
    15/03/20 10:56:38 INFO BlockManagerMaster: Updated info of block broadcast_1_piece0
    15/03/20 10:56:38 INFO SparkContext: Created broadcast 1 from broadcast at DAGScheduler.scala:839
    15/03/20 10:56:38 INFO DAGScheduler: Submitting 2 missing tasks from Stage 0 (README.md MapPartitionsRDD[1] at textFile at <console>:21)
    15/03/20 10:56:38 INFO TaskSchedulerImpl: Adding task set 0.0 with 2 tasks
    15/03/20 10:56:38 INFO TaskSetManager: Starting task 0.0 in stage 0.0 (TID 0, localhost, PROCESS_LOCAL, 1327 bytes)
    15/03/20 10:56:38 INFO TaskSetManager: Starting task 1.0 in stage 0.0 (TID 1, localhost, PROCESS_LOCAL, 1327 bytes)
    15/03/20 10:56:38 INFO Executor: Running task 1.0 in stage 0.0 (TID 1)
    15/03/20 10:56:38 INFO Executor: Running task 0.0 in stage 0.0 (TID 0)
    15/03/20 10:56:38 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
    15/03/20 10:56:38 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:1814+1815
    15/03/20 10:56:38 INFO deprecation: mapred.tip.id is deprecated. Instead, use mapreduce.task.id
    15/03/20 10:56:38 INFO deprecation: mapred.task.id is deprecated. Instead, use mapreduce.task.attempt.id
    15/03/20 10:56:38 INFO deprecation: mapred.task.is.map is deprecated. Instead, use mapreduce.task.ismap
    15/03/20 10:56:38 INFO deprecation: mapred.task.partition is deprecated. Instead, use mapreduce.task.partition
    15/03/20 10:56:38 INFO deprecation: mapred.job.id is deprecated. Instead, use mapreduce.job.id
    15/03/20 10:56:38 INFO Executor: Finished task 1.0 in stage 0.0 (TID 1). 1830 bytes result sent to driver
    15/03/20 10:56:38 INFO Executor: Finished task 0.0 in stage 0.0 (TID 0). 1830 bytes result sent to driver
    15/03/20 10:56:38 INFO TaskSetManager: Finished task 0.0 in stage 0.0 (TID 0) in 120 ms on localhost (1/2)
    15/03/20 10:56:38 INFO TaskSetManager: Finished task 1.0 in stage 0.0 (TID 1) in 111 ms on localhost (2/2)
    15/03/20 10:56:38 INFO TaskSchedulerImpl: Removed TaskSet 0.0, whose tasks have all completed, from pool 
    15/03/20 10:56:38 INFO DAGScheduler: Stage 0 (count at <console>:24) finished in 0.134 s
    15/03/20 10:56:38 INFO DAGScheduler: Job 0 finished: count at <console>:24, took 0.254626 s
    res0: Long = 98
    
    scala> textFile.first() //输出第一个item, 也就是第一行内容
    15/03/20 10:59:31 INFO SparkContext: Starting job: first at <console>:24
    15/03/20 10:59:31 INFO DAGScheduler: Got job 1 (first at <console>:24) with 1 output partitions (allowLocal=true)
    15/03/20 10:59:31 INFO DAGScheduler: Final stage: Stage 1(first at <console>:24)
    15/03/20 10:59:31 INFO DAGScheduler: Parents of final stage: List()
    15/03/20 10:59:31 INFO DAGScheduler: Missing parents: List()
    15/03/20 10:59:31 INFO DAGScheduler: Submitting Stage 1 (README.md MapPartitionsRDD[1] at textFile at <console>:21), which has no missing parents
    15/03/20 10:59:31 INFO MemoryStore: ensureFreeSpace(2656) called with curMem=186365, maxMem=278019440
    15/03/20 10:59:31 INFO MemoryStore: Block broadcast_2 stored as values in memory (estimated size 2.6 KB, free 265.0 MB)
    15/03/20 10:59:31 INFO MemoryStore: ensureFreeSpace(1945) called with curMem=189021, maxMem=278019440
    15/03/20 10:59:31 INFO MemoryStore: Block broadcast_2_piece0 stored as bytes in memory (estimated size 1945.0 B, free 265.0 MB)
    15/03/20 10:59:31 INFO BlockManagerInfo: Added broadcast_2_piece0 in memory on localhost:61651 (size: 1945.0 B, free: 265.1 MB)
    15/03/20 10:59:31 INFO BlockManagerMaster: Updated info of block broadcast_2_piece0
    15/03/20 10:59:31 INFO SparkContext: Created broadcast 2 from broadcast at DAGScheduler.scala:839
    15/03/20 10:59:31 INFO DAGScheduler: Submitting 1 missing tasks from Stage 1 (README.md MapPartitionsRDD[1] at textFile at <console>:21)
    15/03/20 10:59:31 INFO TaskSchedulerImpl: Adding task set 1.0 with 1 tasks
    15/03/20 10:59:31 INFO TaskSetManager: Starting task 0.0 in stage 1.0 (TID 2, localhost, PROCESS_LOCAL, 1327 bytes)
    15/03/20 10:59:31 INFO Executor: Running task 0.0 in stage 1.0 (TID 2)
    15/03/20 10:59:31 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
    15/03/20 10:59:31 INFO Executor: Finished task 0.0 in stage 1.0 (TID 2). 1809 bytes result sent to driver
    15/03/20 10:59:31 INFO TaskSetManager: Finished task 0.0 in stage 1.0 (TID 2) in 8 ms on localhost (1/1)
    15/03/20 10:59:31 INFO DAGScheduler: Stage 1 (first at <console>:24) finished in 0.009 s
    15/03/20 10:59:31 INFO TaskSchedulerImpl: Removed TaskSet 1.0, whose tasks have all completed, from pool 
    15/03/20 10:59:31 INFO DAGScheduler: Job 1 finished: first at <console>:24, took 0.016292 s
    res1: String = # Apache Spark
    
    scala> val linesWithSpark = textFile.filter(line => line.contains("Spark")) //定义一个filter,  这里定义的是包含Spark关键词的filter
    linesWithSpark: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at filter at <console>:23
    
    scala> linesWithSpark.count() //输出filter中的结果数
    15/03/20 11:00:28 INFO SparkContext: Starting job: count at <console>:26
    15/03/20 11:00:28 INFO DAGScheduler: Got job 2 (count at <console>:26) with 2 output partitions (allowLocal=false)
    15/03/20 11:00:28 INFO DAGScheduler: Final stage: Stage 2(count at <console>:26)
    15/03/20 11:00:28 INFO DAGScheduler: Parents of final stage: List()
    15/03/20 11:00:28 INFO DAGScheduler: Missing parents: List()
    15/03/20 11:00:28 INFO DAGScheduler: Submitting Stage 2 (MapPartitionsRDD[2] at filter at <console>:23), which has no missing parents
    15/03/20 11:00:28 INFO MemoryStore: ensureFreeSpace(2840) called with curMem=190966, maxMem=278019440
    15/03/20 11:00:28 INFO MemoryStore: Block broadcast_3 stored as values in memory (estimated size 2.8 KB, free 265.0 MB)
    15/03/20 11:00:28 INFO MemoryStore: ensureFreeSpace(2029) called with curMem=193806, maxMem=278019440
    15/03/20 11:00:28 INFO MemoryStore: Block broadcast_3_piece0 stored as bytes in memory (estimated size 2029.0 B, free 265.0 MB)
    15/03/20 11:00:28 INFO BlockManagerInfo: Added broadcast_3_piece0 in memory on localhost:61651 (size: 2029.0 B, free: 265.1 MB)
    15/03/20 11:00:28 INFO BlockManagerMaster: Updated info of block broadcast_3_piece0
    15/03/20 11:00:28 INFO SparkContext: Created broadcast 3 from broadcast at DAGScheduler.scala:839
    15/03/20 11:00:28 INFO DAGScheduler: Submitting 2 missing tasks from Stage 2 (MapPartitionsRDD[2] at filter at <console>:23)
    15/03/20 11:00:28 INFO TaskSchedulerImpl: Adding task set 2.0 with 2 tasks
    15/03/20 11:00:28 INFO TaskSetManager: Starting task 0.0 in stage 2.0 (TID 3, localhost, PROCESS_LOCAL, 1327 bytes)
    15/03/20 11:00:28 INFO TaskSetManager: Starting task 1.0 in stage 2.0 (TID 4, localhost, PROCESS_LOCAL, 1327 bytes)
    15/03/20 11:00:28 INFO Executor: Running task 0.0 in stage 2.0 (TID 3)
    15/03/20 11:00:28 INFO Executor: Running task 1.0 in stage 2.0 (TID 4)
    15/03/20 11:00:28 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:1814+1815
    15/03/20 11:00:28 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
    15/03/20 11:00:28 INFO Executor: Finished task 1.0 in stage 2.0 (TID 4). 1830 bytes result sent to driver
    15/03/20 11:00:28 INFO Executor: Finished task 0.0 in stage 2.0 (TID 3). 1830 bytes result sent to driver
    15/03/20 11:00:28 INFO TaskSetManager: Finished task 1.0 in stage 2.0 (TID 4) in 9 ms on localhost (1/2)
    15/03/20 11:00:28 INFO TaskSetManager: Finished task 0.0 in stage 2.0 (TID 3) in 11 ms on localhost (2/2)
    15/03/20 11:00:28 INFO DAGScheduler: Stage 2 (count at <console>:26) finished in 0.011 s
    15/03/20 11:00:28 INFO TaskSchedulerImpl: Removed TaskSet 2.0, whose tasks have all completed, from pool 
    15/03/20 11:00:28 INFO DAGScheduler: Job 2 finished: count at <console>:26, took 0.019407 s
    res2: Long = 19  //可以看到有19行包含 Spark关键词
    
    scala> linesWithSpark.first() //打印第一行数据
    15/03/20 11:00:35 INFO SparkContext: Starting job: first at <console>:26
    15/03/20 11:00:35 INFO DAGScheduler: Got job 3 (first at <console>:26) with 1 output partitions (allowLocal=true)
    15/03/20 11:00:35 INFO DAGScheduler: Final stage: Stage 3(first at <console>:26)
    15/03/20 11:00:35 INFO DAGScheduler: Parents of final stage: List()
    15/03/20 11:00:35 INFO DAGScheduler: Missing parents: List()
    15/03/20 11:00:35 INFO DAGScheduler: Submitting Stage 3 (MapPartitionsRDD[2] at filter at <console>:23), which has no missing parents
    15/03/20 11:00:35 INFO MemoryStore: ensureFreeSpace(2864) called with curMem=195835, maxMem=278019440
    15/03/20 11:00:35 INFO MemoryStore: Block broadcast_4 stored as values in memory (estimated size 2.8 KB, free 265.0 MB)
    15/03/20 11:00:35 INFO MemoryStore: ensureFreeSpace(2048) called with curMem=198699, maxMem=278019440
    15/03/20 11:00:35 INFO MemoryStore: Block broadcast_4_piece0 stored as bytes in memory (estimated size 2.0 KB, free 264.9 MB)
    15/03/20 11:00:35 INFO BlockManagerInfo: Added broadcast_4_piece0 in memory on localhost:61651 (size: 2.0 KB, free: 265.1 MB)
    15/03/20 11:00:35 INFO BlockManagerMaster: Updated info of block broadcast_4_piece0
    15/03/20 11:00:35 INFO SparkContext: Created broadcast 4 from broadcast at DAGScheduler.scala:839
    15/03/20 11:00:35 INFO DAGScheduler: Submitting 1 missing tasks from Stage 3 (MapPartitionsRDD[2] at filter at <console>:23)
    15/03/20 11:00:35 INFO TaskSchedulerImpl: Adding task set 3.0 with 1 tasks
    15/03/20 11:00:35 INFO TaskSetManager: Starting task 0.0 in stage 3.0 (TID 5, localhost, PROCESS_LOCAL, 1327 bytes)
    15/03/20 11:00:35 INFO Executor: Running task 0.0 in stage 3.0 (TID 5)
    15/03/20 11:00:35 INFO HadoopRDD: Input split: file:/Users/qpzhang/project/spark-1.3.0-bin-hadoop2.4/README.md:0+1814
    15/03/20 11:00:35 INFO Executor: Finished task 0.0 in stage 3.0 (TID 5). 1809 bytes result sent to driver
    15/03/20 11:00:35 INFO TaskSetManager: Finished task 0.0 in stage 3.0 (TID 5) in 10 ms on localhost (1/1)
    15/03/20 11:00:35 INFO DAGScheduler: Stage 3 (first at <console>:26) finished in 0.010 s
    15/03/20 11:00:35 INFO TaskSchedulerImpl: Removed TaskSet 3.0, whose tasks have all completed, from pool 
    15/03/20 11:00:35 INFO DAGScheduler: Job 3 finished: first at <console>:26, took 0.016494 s
    res3: String = # Apache Spark

    更多命令参考: https://spark.apache.org/docs/latest/quick-start.html

    期间,我们可以通过UI看到job列表和状态:

    跑起来先,第一步已经完成,那么spark架构是什么样的?运行原理?如何自定义配置?如何扩展到分布式?如何编程实现?我们后面再慢慢研究。

    参考资料:

    http://dataunion.org/bbs/forum.php?mod=viewthread&tid=890

    ===================================

    转载请注明出处:http://www.cnblogs.com/zhangqingping/p/4352977.html 

     

  • 相关阅读:
    网络学习笔记
    zabbix4.2学习笔记系列
    ansible2.7学习笔记系列
    记一次磁盘UUID不能识别故障处理
    白话ansible-runner--1.环境搭建
    kubernetes的思考
    计算机网络原理精讲第六章--应用层
    计算机网络原理精讲第五章--传输层
    centos7下LVM挂载和扩容
    多线程下载命令--axel
  • 原文地址:https://www.cnblogs.com/zhangqingping/p/4352977.html
Copyright © 2011-2022 走看看