zoukankan      html  css  js  c++  java
  • TensorFlow经典案例3:实现线性回归

    TensorFlow实现线性回归

    #实现线性回归
    import tensorflow as tf
    import numpy as np
    import matplotlib.pyplot as plt
    rng = np.random
    
    learn_rate = 0.01
    training_epochs = 1000
    display_step = 50
    
    #生成训练数据
    train_X = np.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,
    
                             7.042,10.791,5.313,7.997,5.654,9.27,3.1])
    
    train_Y = np.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,
    
                             2.827,3.465,1.65,2.904,2.42,2.94,1.3])
    n_samples = train_X.shape[0]
    
    #创建图
    X = tf.placeholder("float")
    Y = tf.placeholder("float")
    
    W = tf.Variable(rng.randn(),name="weigth")
    b = tf.Variable(rng.randn(),name="bias")
    
    prediction = tf.add(tf.multiply(X,W),b)
    
    cost = tf.reduce_sum(tf.pow(prediction-Y,2) / (2*n_samples))
    
    train_step = tf.train.GradientDescentOptimizer(learn_rate).minimize(cost)
    
    init = tf.global_variables_initializer()
    
    with tf.Session() as sess:
        sess.run(init)
        for i in range(training_epochs):
            for(x,y) in zip(train_X,train_Y):
                sess.run(train_step,feed_dict={X:x,Y:y})
            if (i + 1) % display_step == 0:
                c = sess.run(cost,feed_dict={X:train_X,Y:train_Y})
                print("Epoch:", '%04d' % (i + 1), "cost=", "{:.9f}".format(c),"W=", sess.run(W), "b=", sess.run(b))
    
        print("Optimization Finished!")
    
        training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y})
    
        print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '
    ')
    
        plt.plot(train_X,train_Y,'ro',label="origal data")
        plt.plot(train_X,sess.run(W) * train_X + sess.run(b),label="fit line")
        plt.legend()
        plt.show()
    
        test_X = np.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1])
    
        test_Y = np.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
    
        print("Testing... (Mean square loss Comparison)")
    
        testing_cost = sess.run(
    
            tf.reduce_sum(tf.pow(prediction - Y, 2)) / (2 * test_X.shape[0]),
    
            feed_dict={X: test_X, Y: test_Y})  
    
        print("Testing cost=", testing_cost)
    
        print("Absolute mean square loss difference:", abs(
    
            training_cost - testing_cost))
    
        plt.plot(test_X, test_Y, 'bo', label='Testing data')
    
        plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
    
        plt.legend()
    
        plt.show()
    

      公众号:一个有趣的机器学习社区

    (分享大量AI,大数据资料)

  • 相关阅读:
    手把手教你安装系统-只需一个U盘
    Linux系统优化05-Centos修改主机名
    Linux系统优化06-Centos远程登录与连接(SSH配置)
    数据库ACID
    Java中的String,StringBuilder,StringBuffer三者的区别
    zookeeper的选举机制
    mysql的数据类型
    常用类(四)
    常用类(三)
    常用类(二)
  • 原文地址:https://www.cnblogs.com/zhangshilin/p/7224217.html
Copyright © 2011-2022 走看看