1.事务(Transaction)
在web性能测试中,一个事务表示一个“从用户发送请求->web server接受到请求,进行处理-> web server向DB获取数据->生成用户的object(页面),返回给用户”的过程,一般的响应时间都是针对事务而言的。
2.请求响应时间
请求响应时间指的是从客户端发起的一个请求开始,到客户端接收到从服务器端返回的响应结束,这个过程所耗费的时间,在某些工具中,响应通常会称为“TTLB”,即"time to last byte",意思是从发起一个请求开始,到客户端接收到最后一个字节的响应所耗费的时间,响应时间的单位一般为“秒”或者“毫秒”。一个公式可以表示:响应时间=网络响应时间+应用程序响应时间。标准可参考国外的3/5/10原则:
(1)在3秒钟之内,页面给予用户响应并有所显示,可认为是“很不错的”;
(2)在3~5秒钟内,页面给予用户响应并有所显示,可认为是“好的”;
(3)在5~10秒钟内,页面给予用户响应并有所显示,可认为是“勉强接受的”;
(4)超过10秒就让人有点不耐烦了,用户很可能不会继续等待下去;
3.事务响应时间
事务可能由一系列请求组成,事务的响应时间主要是针对用户而言,属于宏观上的概念,是为了向用户说明业务响应时间而提出的.例如:跨行取款事务的响应时间就是由一系列的请求组成的.事务响应时间是直接衡量系统性能的参数.
4.并发用户数
并发一般分为2种情况。一种是严格意义上的并发,即所有的用户在同一时刻做同一件事情或者操作,这种操作一般指做同一类型的业务。比如在信用卡审批业务中,一定数目的拥护在同一时刻对已经完成的审批业务进行提交;还有一种特例,即所有用户进行完全一样的操作,例如在信用卡审批业务中,所有的用户可以一起申请业务,或者修改同一条记录。
另外一种并发是广义范围的并发。这种并发与前一种并发的区别是,尽管多个用户对系统发出了请求或者进行了操作,但是这些请求或者操作可以是相同的,也可以是不同的。对整个系统而言,仍然是有很多用户同时对系统进行操作,因此也属于并发的范畴。
可以看出,后一种并发是包含前一种并发的。而且后一种并发更接近用户的实际使用情况,因此对于大多数的系统,只有数量很少的用户进行“严格意义上的并发”。对于WEB性能测试而言,这2种并发情况一般都需要进行测试,通常做法是先进行严格意义上的并发测试。严格意义上的用户并发一般发生在使用比较频繁的模块中,尽管发生的概率不是很大,但是一旦发生性能问题,后果很可能是致命的。严格意义上的并发测试往往和功能测试关联起来,因为并发功能遇到异常通常都是程序问题,这种测试也是健壮性和稳定性测试的一部分。
用户并发数量:关于用户并发的数量,有2种常见的错误观点。 一种错误观点是把并发用户数量理解为使用系统的全部用户的数量,理由是这些用户可能同时使用系统;还有一种比较接近正确的观点是把在线用户数量理解为并发用户数量。实际上在线用户也不一定会和其他用户发生并发,例如正在浏览网页的用户,对服务器没有任何影响,但是,在线用户数量是计算并发用户数量的主要依据之一。
5.吞吐量
指的是在一次性能测试过程中网络上传输的数据量的总和.吞吐量/传输时间,就是吞吐率.
6.TPS(transactionper second)
每秒钟系统能够处理的交易或者事务的数量.它是衡量系统处理能力的重要指标.
7.点击率
每秒钟用户向WEB服务器提交的HTTP请求数.这个指标是WEB应用特有的一个指标:WEB应用是"请求-响应"模式,用户发出一次申请,服务器就要处理一次,所以点击是WEB应用能够处理的交易的最小单位.如果把每次点击定义为一个交易,点击率和TPS就是一个概念.容易看出,点击率越大,对服务器的压力越大.点击率只是一个性能参考指标,重要的是分析点击时产生的影响。需要注意的是,这里的点击并非指鼠标的一次单击操作,因为在一次单击操作中,客户端可能向服务器发出多个HTTP请求.
8.资源利用率
指的是对不同的系统资源的使用程度,例如服务器的CPU利用率,磁盘利用率等.资源利用率是分析系统性能指标进而改善性能的主要依据,因此是WEB性能测试工作的重点.
资源利用率主要针对WEB服务器,操作系统,数据库服务器,网络等,是测试和分析瓶颈的主要参考.在WEB性能测试中,更根据需要采集相应的参数进行分析。
9.磁盘I/O
磁盘的 I/O,顾名思义就是磁盘的输入输出。输入指的是对磁盘写入数据,输出指的是从磁盘读出数据
指标1:IOPS
IOPS (Input/Output Per Second)即每秒的输入输出量(或读写次数),是衡量磁盘性能的主要指标之一。IOPS是指单位时间内系统能处理的I/O请求数量,I/O请求通常为读或写数据操作请求。随机读写频繁的应用,如OLTP(Online Transaction Processing),IOPS是关键衡量指标。
IOPS可细分为如下几个指标:
- Toatal IOPS,混合读写和顺序随机I/O负载情况下的磁盘IOPS,这个与实际I/O情况最为相符,大多数应用关注此指标。
- Random Read IOPS,100%随机读负载情况下的IOPS。
- Random Write IOPS,100%随机写负载情况下的IOPS。
- Sequential Read IOPS,100%顺序读负载情况下的IOPS。
- Sequential Write IOPS,100%顺序写负载情况下的IOPS。
对于同一个磁盘(或者 LUN),随着每次 I/O 读写数据的大小不通,IOPS 的数值也不是固定不变的。例如,每次 I/O 写入或者读出的都是连续的大数据块,此时 IOPS 相对会低一些;
在不频繁换道的情况下,每次写入或者读出的数据块小,相对来讲 IOPS 就会高一些。也就是说,IOPS 也取决与I/O块的大小,采用不同I/O块的大小测出的IOPS值是不同的。
对一个具体的IOPS, 可以了解它当时测试的I/O块的尺寸。并且IOPS都具有极限值,表1列出了各种磁盘的 IOPS 极限值。
指标2:数据吞吐量(Throughput)
指单位时间内可以成功传输的数据数量。对于大量顺序读写的应用,如VOD(Video On Demand),则更关注吞吐量指标。
简而言之:
磁盘的 IOPS,也就是在一秒内,磁盘进行多少次 I/O 读写。
磁盘的吞吐量,也就是每秒磁盘 I/O 的流量,即磁盘写入加上读出的数据的大小。
参考资料:https://www.cnblogs.com/wx170119/p/11427837.html
9. 通用指标(指Web应用服务器、数据库服务器必需测试项)
10. Web服务器指标
11. 数据库服务器性能指标
12.系统的瓶颈定义
13.稳定系统的资源状态