zoukankan      html  css  js  c++  java
  • NLP(十七):BiLSTM-Attention文本分类

    一、概述

    首先,我们导入需要的包,包括模型,优化器,梯度求导等,将数据类型全部转化成tensor类型

    import numpy as np
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.autograd import Variable
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    dtype = torch.FloatTensor

    接下来我们确定一些基本的参数,并且简单地构造一个数据,实现情感的二分类。数据集中三个句子,一半正,一半负。label中1是好的情感,0是不好的情感。

    embedding_dim = 3
    n_hidden = 5 
    num_classes = 2  # 0 or 1
    sentences = ["i love you", "he loves me", "she likes baseball", "i hate you", "sorry for that", "this is awful"]
    labels = [1, 1, 1, 0, 0, 0]  

    接着,我们需要构建词表,把数据集中出现过的词拿出来并给它一个编号:

    word_list = " ".join(sentences).split()
    word_list = list(set(word_list))
    word_dict = {w: i for i, w in enumerate(word_list)}
    vocab_size = len(word_dict)

    然后我们定义输入输出,输入其实是每个句子中的每个单词对应在词表中的id,将输入输出变成Variable,以便于求导:

    inputs = []
    for sen in sentences:
        inputs.append(np.asarray([word_dict[n] for n in sen.split()]))
    targets = []
    for out in labels:
        targets.append(out) 
    input_batch = Variable(torch.LongTensor(inputs))
    target_batch = Variable(torch.LongTensor(targets))

    接下来构造模型:

    class BiLSTM_Attention(nn.Module):
        def __init__(self):
            super(BiLSTM_Attention, self).__init__()
            self.embedding = nn.Embedding(vocab_size, embedding_dim)
            self.lstm = nn.LSTM(embedding_dim, n_hidden, bidirectional=True)
            self.out = nn.Linear(n_hidden * 2, num_classes)
        def attention_net(self, lstm_output, final_state):
            hidden = final_state.view(-1, n_hidden * 2, 1)  
            attn_weights = torch.bmm(lstm_output, hidden).squeeze(2) 
            soft_attn_weights = F.softmax(attn_weights, 1)
            context = torch.bmm(lstm_output.transpose(1, 2), soft_attn_weights.unsqueeze(2)).squeeze(2)
            return context, soft_attn_weights.data.numpy() 
    
        def forward(self, X):
            input = self.embedding(X) 
            input = input.permute(1, 0, 2)
            hidden_state = Variable(torch.zeros(1*2, len(X), n_hidden)) 
            cell_state = Variable(torch.zeros(1*2, len(X), n_hidden)) 
            output, (final_hidden_state, final_cell_state) = self.lstm(input, (hidden_state, cell_state))
            output = output.permute(1, 0, 2)
            attn_output, attention = self.attention_net(output, final_hidden_state)
            return self.out(attn_output), attention

    首先embedding中需要传入词表,以及嵌入的维度。有一个双向LSTM层,还有一个线性层以获取LSTM中的隐层参数。
    这里详细说一下attention层的操作,首先hidden 的维度是 [batch_size, n_hidden * num_directions(=2), 1(=n_layer)],接下来确定attention矩阵,将LSTM输出与hidden相乘,去掉第三个维度。attn_weights的维度是[batch_size, n_step] ,两个矩阵相乘后的维度,[batch_size, n_hidden * num_directions(=2), n_step] * [batch_size, n_step, 1] = [batch_size, n_hidden * num_directions(=2), 1],然后去掉了第三个维度的1。这样再经过softmax函数。再将权重函数与LSTM输出相乘得到context。最终context的维度就是 [batch_size, n_hidden * num_directions(=2)] 。
    最后在forward方法中操作各个层,进行层的各种操作,获得输出和attention矩阵。

    接下来就是将模型实例化,并确定损失函数,优化器:

    model = BiLSTM_Attention()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)

    最后训练并测试:

    # Training
    for epoch in range(5000):
        optimizer.zero_grad()
        output, attention = model(input_batch)
        loss = criterion(output, target_batch)
        if (epoch + 1) % 1000 == 0:
            print('Epoch:', '%04d' % (epoch + 1), 'cost =', '{:.6f}'.format(loss))
        loss.backward()
        optimizer.step()
    # Test
    test_text = 'sorry hate you'
    tests = [np.asarray([word_dict[n] for n in test_text.split()])]
    test_batch = Variable(torch.LongTensor(tests))
    # Predict
    predict, _ = model(test_batch)
    predict = predict.data.max(1, keepdim=True)[1]
    if predict[0][0] == 0:
        print(test_text,"is Bad Mean...")
    else:
        print(test_text,"is Good Mean!!")

    最终我们画图看下attention中结果:

    fig = plt.figure(figsize=(6, 3)) # [batch_size, n_step]
    ax = fig.add_subplot(1, 1, 1)
    ax.matshow(attention, cmap='viridis')
    ax.set_xticklabels(['']+['first_word', 'second_word', 'third_word'], fontdict={'fontsize': 14}, rotation=90)
    ax.set_yticklabels(['']+['batch_1', 'batch_2', 'batch_3', 'batch_4', 'batch_5', 'batch_6'], fontdict={'fontsize': 14})
    plt.show()
  • 相关阅读:
    并发
    基础概念总结
    Tomcat总结
    JVM总结
    Spring事务管理
    数据结构和算法
    拦截器
    关于XML fragments parsed from previous mappers already contains value for错误的探索
    zookeeper比较好的学习地址
    关于idea中的maven打包
  • 原文地址:https://www.cnblogs.com/zhangxianrong/p/14793935.html
Copyright © 2011-2022 走看看