Bert是非常强化的NLP模型,在文本分类的精度非常高。本文将介绍Bert中文文本分类的基础步骤,文末有代码获取方法。
步骤1:读取数据
本文选取了头条新闻
分类数据集来完成分类任务,此数据集是根据头条新闻的标题来完成分类。
101 京城最值得你来场文化之旅的博物馆_!_保利集团,马未都,中国科学技术馆,博物馆,新中国
101 发酵床的垫料种类有哪些?哪种更好?
101 上联:黄山黄河黄皮肤黄土高原。怎么对下联?
101 林徽因什么理由拒绝了徐志摩而选择梁思成为终身伴侣?
101 黄杨木是什么树?
首先需要下载数据,并解压数据:
wget http://github.com/skdjfla/toutiao-text-classfication-dataset/raw/master/toutiao_cat_data.txt.zip
!unzip toutiao_cat_data.txt.zip
按照数据集格式读取新闻标题和新闻标签:
import pandas as pd
import codecs
# 标签
news_label = [int(x.split('_!_')[1])-100
for x in codecs.open('toutiao_cat_data.txt')]
# 文本
news_text = [x.strip().split('_!_')[-1] if x.strip()[-3:] != '_!_' else x.strip().split('_!_')[-2]
for x in codecs.open('toutiao_cat_data.txt')]
步骤2:划分数据集
借助train_test_split
划分20%的数据为验证集,并保证训练集和验证部分类别同分布。
import torch
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader, TensorDataset
import numpy as np
import pandas as pd
import random
import re
# 划分为训练集和验证集
# stratify 按照标签进行采样,训练集和验证部分同分布
x_train, x_test, train_label, test_label = train_test_split(news_text[:],
news_label[:], test_size=0.2, stratify=news_label[:])
步骤3:对文本进行编码
使用transformers
对文本进行转换,这里使用的是bert-base-chinese
模型,所以加载的Tokenizer也要对应。
# transformers bert相关的模型使用和加载
from transformers import BertTokenizer
# 分词器,词典
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
train_encoding = tokenizer(x_train, truncation=True, padding=True, max_length=64)
test_encoding = tokenizer(x_test, truncation=True, padding=True, max_length=64)
使用编码后的数据构建Dataset:
# 数据集读取
class NewsDataset(Dataset):
def __init__(self, encodings, labels):
self.encodings = encodings
self.labels = labels
# 读取单个样本
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
item['labels'] = torch.tensor(int(self.labels[idx]))
return item
def __len__(self):
return len(self.labels)
train_dataset = NewsDataset(train_encoding, train_label)
test_dataset = NewsDataset(test_encoding, test_label)
这里dataset是直接读取文本在经过所以加载的Tokenizer处理后的数据,主要的含义如下:
input_ids
:字的编码token_type_ids
:标识是第一个句子还是第二个句子attention_mask
:标识是不是填充
步骤4:定义Bert模型
由于这里是文本分类任务,所以直接使用BertForSequenceClassification
完成加载即可,这里需要制定对应的类别数量。
from transformers import BertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=17)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# 单个读取到批量读取
train_loader = DataLoader(train_dataset, batch_size=16, shuffle=True)
test_dataloader = DataLoader(test_dataset, batch_size=16, shuffle=True)
# 优化方法
optim = AdamW(model.parameters(), lr=2e-5)
total_steps = len(train_loader) * 1
scheduler = get_linear_schedule_with_warmup(optim,
num_warmup_steps = 0, # Default value in run_glue.py
num_training_steps = total_steps)
步骤5:模型训练与验证
使用常规的正向传播和反向传播即可,在训练过程中计算类别准确率。
# 训练函数
def train():
model.train()
total_train_loss = 0
iter_num = 0
total_iter = len(train_loader)
for batch in train_loader:
# 正向传播
optim.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
total_train_loss += loss.item()
# 反向梯度信息
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# 参数更新
optim.step()
scheduler.step()
iter_num += 1
if(iter_num % 100==0):
print("epoth: %d, iter_num: %d, loss: %.4f, %.2f%%" % (epoch, iter_num, loss.item(), iter_num/total_iter*100))
print("Epoch: %d, Average training loss: %.4f"%(epoch, total_train_loss/len(train_loader)))
def validation():
model.eval()
total_eval_accuracy = 0
total_eval_loss = 0
for batch in test_dataloader:
with torch.no_grad():
# 正常传播
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs[0]
logits = outputs[1]
total_eval_loss += loss.item()
logits = logits.detach().cpu().numpy()
label_ids = labels.to('cpu').numpy()
total_eval_accuracy += flat_accuracy(logits, label_ids)
avg_val_accuracy = total_eval_accuracy / len(test_dataloader)
print("Accuracy: %.4f" % (avg_val_accuracy))
print("Average testing loss: %.4f"%(total_eval_loss/len(test_dataloader)))
print("-------------------------------")
for epoch in range(4):
print("------------Epoch: %d ----------------" % epoch)
train()
validation()
训练一个Epoch的输出精度已经达到87%,Bert模型非常有效。
------------Epoch: 0 ----------------
epoth: 0, iter_num: 2500, loss: 0.7519, 100.00%
Epoch: 0, Average training loss: 0.6181
Accuracy: 0.8747
Average testing loss: 0.4602
-------------------------------
转自:https://zhuanlan.zhihu.com/p/388009679