zoukankan      html  css  js  c++  java
  • 后缀表达式的计算

           在实际应用中,由于中缀表达式计算的复杂度较大,并且计算式占用的空间较多,而后缀表达式在理论上可以计算任意复杂度的表达式,并且利用栈的特点每次只需要对栈顶元素进行操作即可,因而将中缀表达式转换为后缀表达式之后将会对计算效率大大提高。

           后缀表达式的计算规则为:当遇到操作数(数字)时就将其入栈,当遇到操作符时就取出栈顶的两个元素,根据当前操作符进行计算,将计算结果再压入栈顶。如果表达式是规整的表达式,在整个表达式扫描完成之后栈顶将只有一个数字,该数据即为计算结果。

           具体的代码如下:

    import java.util.Stack;
    
    public class LastExpression {
      private static Stack<Float> stack = new Stack<>();
      public static Float compute(String str) {
        transfer(str);
        return stack.pop();
      }
    
      private static void transfer(String str) {
        for (int i = 0; i < str.length(); i++) {
          switch (str.charAt(i)) {
            case ' ':
              continue;
            case '+':
              plus();
              break;
            case '-':
              sub();
              break;
            case '*':
              mul();
              break;
            case '/':
              div();
              break;
            default:
              i = num(str, i);
          }
        }
      }
    
      private static int num(String str, int index) {
        StringBuilder numStr = new StringBuilder("");
        Character ch = null;
        while (index < str.length() && ((ch = str.charAt(index)) <= '9' && ch >= '0')) {
          numStr.append(ch);
          index++;
        }
        stack.push(Float.parseFloat(numStr.toString()));
        return index - 1;
      }
    
      private static void plus() {
        Float a = stack.pop();
        Float b = stack.pop();
        stack.push(a + b);
      }
    
      private static void sub() {
        Float a = stack.pop();
        Float b = stack.pop();
        stack.push(a - b);
      }
    
      private static void mul() {
        Float a = stack.pop();
        Float b = stack.pop();
        stack.push(a * b);
      }
    
      private static void div() {
        Float a = stack.pop();
        Float b = stack.pop();
        stack.push(a / b);
      }
    }
  • 相关阅读:
    【POJ2311】Cutting Game-SG博弈
    deleted
    deleted
    deleted
    deleted
    deleted
    deleted
    deleted
    deleted
    deleted
  • 原文地址:https://www.cnblogs.com/zhangxufeng/p/8284065.html
Copyright © 2011-2022 走看看