zoukankan      html  css  js  c++  java
  • [实变函数]3.2 可测集 (measurable set)

    1 $bR^n$ 中集合 $E$ 称为可测的 (measurable), 如果 $$eelabel{3.2:Caratheodory} m^*T=m^*(Tcap E)+m^*(Tcap E^c),quad forall Tsubset bR^n. eee$$  

        (1) 所有可测集构成的集族记为 $scrM$. 

        (2) 这里的 $T$ 称为试验集 (test set). 

        (3) eqref{3.2:Caratheodory} 称为 Caratheodory 条件. 

        (4) 当 $Ein scrM$ 时, 记 $mE$ 为 $E$ 的测度: $mE=m^*E$.     

     

    2  $$ex Embox{ 可测}lra m^*I=m^*(Icap E)+m^*(Icap E^c),quad forall Isubset bR^n. eex$$  

        证明: $ a$ 显然.  

            $la$ 由外测度的次可数可加性知 $leq$ 成立, 往证 $geq$: $$eex ea m^*T+ve&>sum_{i=1}^infty |I_i|quadsex{Tsubset cup_{i=1}^infty I_i}\ &=sum_{i=1}^infty m^*I_i\ &=sum_{i=1}^infty sez{m^*(I_icap E)    +m^*(I_icap E^c)}\ &geq m^*sez{cup_{i=1}^infty  (I_icap E)} +m^*sez{cup_{i=1}^infty (I_icap E^c)}\ &geq m^*(Tcap E)+m^*(Tcap E^c)\ &quadsex{Tcap Esubset cup_{i=1}^infty (I_icap E),quad  Tcap E^csubset cup_{i=1}^infty (I_icap E^c}. eea eeex$$    

     

    3  $$eelabel{3.2:measure_property_sepration} Embox{ 可测}lra m^*(Acup B)=m^*A+m^*B,quadforall Asubset E, Bsubset E^c. eee$$  

        证明: $ a$ 取试验集 $T=Acup B$ 即可.  

            $la$  $$ex m^*T=m^*sez{(Tcap E)cup (Tcap E^c)}    =m^*(Tcap E)+m^*(Tcap E^c). eex$$     

        

    4 可测集的性质:  

        (1) $E$ 可测 $ a E^c$ 可测.    

            证明:    $$ex    m^*T=m^*(Tcap E)+m^*(Tcap E^c)    =m^*(Tcap (E^c)^c)+m^*(Tcap E^c).    eex$$   

     

        (2) $E_1,E_2$ 可测 $ a E_1cup E_2, E_1cap E_2$ 可测.    

            证明: 由     $$ex    E_1cap E_2=sex{E_1^ccup E_2^c}^c    eex$$    

            知仅须证明  $E_1cup E_2$ 可测:    $$eex    ea    m^*T    &=m^*(Tcap E_1)+m^*(Tcap E_1^c)\    &=m^*(Tcap E_1) +m^*(Tcap E_1^ccap E_2)+m^*(Tcap E_1^ccap E_2^c)\    &=m^*(Tcap (E_1cup E_2)) +m^*(Tcap(E_1cup E_2)^c)\    &quadsex{mbox{ 由 }eqref{3.2:measure_property_sepration} mbox{ 及 }E_1cup (E_1^ccap E_2)=E_1cup E_2}.    eea    eeex$$    

     

        (3) $sed{E_i}_{i=1}^n$ 可测 $dps{cup_{i=1}^n E_i, cap_{i=1}^n E_i}$ 可测.    

            证明: 利用性质 (2) 及数学归纳法.    

     

        (4) $sed{E_i}_{i=1}^infty$ 可测 $dps{ a cup_{i=1}^infty E_i}$ 可测; 且若 $E_i$ 两两不交, 则     $$eelabel{3.2:measure_property_countably_additivity}    msex{cup_{i=1}^infty E_i}=sum_{i=1}^infty mE_i.    eee$$  

            证明: 由    $$ex    cup_{i=1}^infty E_i    =E_1cup     [E_2s E_1]cup     [E_3s(E_1cup E_2)]cup    cdots    eex$$

            知仅须验证当 $E_i$ 两两不交时, $dps{cup_{i=1}^infty E_i}$ 可测, 且 eqref{3.2:measure_property_countably_additivity} 成立:    $$eex    ea    m^*T&=m^*sez{Tcap sex{cup_{i=1}^j E_i}}    +m^*sez{Tcap sex{cup_{i=1}^j E_i}^c}\    &geq m^*sez{cup_{i=1}^j (Tcap E_i)}    +m^*sez{Tcapsex{cup_{i=1}^infty E_i}^c}\    &=sum_{i=1}^j m^*(Tcap E_i)    +m^*sez{Tcapsex{cup_{i=1}^infty E_i}^c}\    &quadsex{E_imbox{ 两两不交, 利用 }eqref{3.2:measure_property_sepration}mbox{ 及数学归纳法}};    eea    eeex$$    $$eex    ea    m^*T&geq sum_{i=1}^infty m^*(Tcap E_i) +m^*sez{Tcapsex{cup_{i=1}^infty E_i}^c}\    &geq m^*sez{Tcap sex{cup_{i=1}^infty  E_i}}    +m^*sez{Tcapsex{cup_{i=1}^infty E_i}^c}.    eea    eeex$$    

        (5) $sed{E_i}_{i=1}^infty$ 可测 $dps{ a cap_{i=1}^infty E_i}$ 可测.    

     

        (6) $sed{E_i}$ 单增可测 $dps{ a msex{lim_{i oinfty}E_i}=lim_{i oinfty}mE_i}$.

            证明:    $$eex    ea    msex{lim_{i oinfty}E_i}    &=msex{cup_{i=1}^infty E_i}\    &=msex{cup_{i=1}^infty F_i}quadsex{F_1=E_1,F_2=E_2s E_1,F_3=E_3s E_2,cdots}\    &=sum_{i=1}^infty m F_i\    &=lim_{j oinfty} sum_{i=1}^j m F_i\    &=lim_{j oinfty} sez{m E_1+sum_{i=2}^j (mE_i-mE_{i-1})}\    &=lim_{j oinfty} mE_j.    eea    eeex$$    

     

        (7) $sed{E_i}$ 单减可测, $mE_1<infty$ $dps{ a msex{lim_{i oinfty} E_i}=lim_{i oinfty}mE_i}$.

            证明:    $$eex    ea    msex{lim_{i oinfty}E_i}    &=msex{cap_{i=1}^infty E_i}\    &=msez{E_1s sex{E_1s cap_{i=1}^infty E_i}}\    &=msez{E_1s cup_{i=1}^infty (E_1s E_i)}\    &=m E_1-msez{cup_{i=1}^infty (E_1s E_i)}\    &quadsex{mbox{由 }mE_1<inftymbox{ 及 }cup_{i=1}^infty (Es E_i)mbox{ 可测}}\&= mE_1-lim_{i oinfty}m (E_1s E_i)\    &=mE_1-lim_{i oinfty}(mE_1-mE_i)\    &=lim_{i oinfty}mE_i.    eea    eeex$$  

      

        5 作业: Page 75 T 6, T 7.    

     

  • 相关阅读:
    java web环境搭建
    java动手动脑异常处理
    java动手动脑多态
    python全栈开发day67--字段类型、字段属性、ORM回顾
    python全栈开发day66-视图系统、路由系统
    python全栈开发day65-templates:tags、母版和继承、组件、静态文件相关、simple_tag和inclusion_tag
    python全栈开发day64-模板-变量和(.)的使用,filters和自定义filter
    Django Models的数据类型汇总
    nginx反向代理uwsgi django服务器搭建总结
    Centos更新yum源
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/3549139.html
Copyright © 2011-2022 走看看