zoukankan      html  css  js  c++  java
  • 求复变函数的 Taylor 展式与 Laurent 展式[华中师范大学2010年复变函数复试试题]

    设 $$ex f(z)=frac{1}{(z-1)(z-2)}. eex$$

    (1) 求 $f(z)$ 在 $|z|<1$ 内的 Taylor 展式.

    (2) 求 $f(z)$ 在圆环 $1<|z|<2$ 内的 Laurent 展式.

    (3) 求 $f(z)$ 在圆环 $|z|>2$ 内的 Laurent 展式. 

    解答:

    (1) $$eex ea f(z)&=frac{1}{z-2}-frac{1}{z-1}\ &=-frac{1}{2}frac{1}{1-frac{z}{2}} +frac{1}{1-z}\ &=-frac{1}{2}sum_{n=0}^infty sex{frac{z}{2}}^n +sum_{n=0}^infty z^n\ &=sum_{n=0}^infty sex{1-frac{1}{2^{n+1}}}z^n,quad |z|<1. eea eeex$$

    (2) $$eex ea f(z)&=frac{1}{z-2}-frac{1}{z-1}\ &=-frac{1}{2}frac{1}{1-frac{z}{2}} -frac{1}{z}frac{1}{1-frac{1}{z}}\ &=-frac{1}{2}sum_{n=0}^infty sex{frac{z}{2}}^n -frac{1}{z}sum_{n=0}^infty frac{1}{z^n}\ &=-sum_{n=1}^infty frac{1}{z^n}-sum_{n=0}^infty frac{z^n}{2^{n+1}},quad 1<|z|<2. eea eeex$$

    (3) $$eex ea f(z)&=frac{1}{z-2}-frac{1}{z-1}\ &=frac{1}{z}frac{1}{1-frac{2}{z}} -frac{1}{z}frac{1}{1-frac{1}{z}}\ &=frac{1}{z}sum_{n=0}^infty sex{frac{2}{z}}^n -frac{1}{z}sum_{n=0}^infty sex{frac{1}{z}}^n\ &=sum_{n=1}^infty frac{2^{n-1}-1}{z^n},quad |z|>2. eea eeex$$ 

  • 相关阅读:
    Shell与if相关参数
    Linux盘符漂移问题
    shell脚本,每5个字符之间插入"|",行末不插入“|”
    paste:linux合并两个文件中的列(左右合并)
    关于bc 的scale .
    RxJS与观察者模式
    什么是虚拟DOM
    JS设计模式
    JS自定义事件
    原生js实现拖拽功能
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/3591205.html
Copyright © 2011-2022 走看看