zoukankan      html  css  js  c++  java
  • [再寄小读者之数学篇](2014-06-28 证明级数几乎处处收敛)

    设 $fin L(bR)$, 试证: $$ex vsm{n}f(n^2x) eex$$ 在 $bR$ 上几乎处处收敛到一 Lebesgue 函数.

    证明: 由 $fin L(bR)$ 知 $|f|in L(bR)$ (see [程其襄, 张奠宙, 魏国强, 胡善文, 王漱石, 实变函数与泛函分析基础 (第三版), 北京: 高等教育出版社, 2010 年] Page 109 (vi)). 既然 $$ex vsm{n} int |f(n^2x)| d x =vsm{n} frac{1}{n}^2int |f(t)| d t <infty, eex$$ 我们有 (see [程其襄, 张奠宙, 魏国强, 胡善文, 王漱石, 实变函数与泛函分析基础 (第三版), 北京: 高等教育出版社, 2010 年] Page 116 定理 7) $$ex int vsm{n} f(n^2x) d x =vsm{n} int f(n^2x) d x =vsm{n} frac{1}{n^2}int f(t) d t. eex$$ 按照 [程其襄, 张奠宙, 魏国强, 胡善文, 王漱石, 实变函数与泛函分析基础 (第三版), 北京: 高等教育出版社, 2010 年] Page 108 (ii) 即知 $$ex vsm{n} f(n^2x) eex$$ 在 $bR$ 上几乎处处有限, 而收敛. 

  • 相关阅读:
    调试与分析
    GCC
    汇编
    数据恢复
    TCP/IP
    shell
    vmstat、top
    计算程序运行时间的封装
    protobuf
    c++模板
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/3813812.html
Copyright © 2011-2022 走看看