zoukankan      html  css  js  c++  java
  • 华中师范大学2012年数学分析考研试题参考解答

    来源  [尊重原有作者劳动成果]

     

    一.

    (1)证明:由${{x}_{1}}=frac{1}{2},{{x}_{2}}=frac{3}{8},{{x}_{3}}=frac{55}{128},cdots $,猜测${{{x}_{2n+1}}}$单调递减,${{{x}_{2n}}}$单调递增

    下用数归法先证$sqrt{2}-1le {{x}_{2n+1}}le frac{1}{2},frac{3}{8}le {{x}_{2n+1}}le sqrt{2}-1$

    (1)当$n=1$时,$sqrt{2}-1{{x}_{1}}=frac{1}{2}$恒成立

    (2)设$n=2k-1$时,$sqrt{2}-1le {{x}_{2k-1}}le frac{1}{2}$,则

    [{{x}_{2k+1}}=frac{1}{2}(1-x_{2k}^{2})=frac{1}{2}[1-frac{1}{4}{{(1-x_{2k-1}^{2})}^{2}}]in [sqrt{2}-1,frac{1}{2})]

    即当$n=2k+1$时也恒成立

    由(1)(2)可知:$sqrt{2}-1le {{x}_{2n+1}}le frac{1}{2}$

    同理可证$frac{3}{8}le {{x}_{2n+1}}le sqrt{2}-1$

    再证${{{x}_{2n+1}}}$单调递减,${{{x}_{2n}}}$单调递增,同样采用数学归纳法

    (1)当$n=1$时,${{x}_{1}}=frac{1}{2}frac{55}{128}={{x}_{3}}$恒成立

    (2)设$n=2k-1$时,${{x}_{2k-1}}ge {{x}_{2k+1}}$,则

    ${{x}_{2k+3}}-{{x}_{2k+1}}=frac{1}{8}[{{(1-x_{2k-1}^{2})}^{2}}-{{(1-x_{2k+1}^{2})}^{2}}]=frac{1}{8}(x_{2k+1}^{2}-x_{2k-1}^{2})(2-x_{2k+1}^{2}-x_{2k-1}^{2})le 0$

    即当$n=2k+1$时也恒成立

    由(1)(2)可知:${{{x}_{2n+1}}}$单调递减

    同理可证:${{{x}_{2n}}}$单调递增

    于是${{{x}_{2n+1}}}$单调递减,$sqrt{2}-1le {{x}_{2n+1}}le frac{1}{2}$,由单调有界原理可知:${{{x}_{2n+1}}}$收敛

    于是不妨设$underset{n o +infty }{mathop{lim }}\,{{x}_{2n+1}}=lin [sqrt{2}-1,frac{1}{2}]$,由${{x}_{2k+3}}=frac{1}{2}[1-frac{1}{4}{{(1-x_{2k+1}^{2})}^{2}}]$,两边对$n o +infty $

    则$l=frac{1}{2}[1-frac{1}{4}{{(1-{{l}^{2}})}^{2}}]$,求得$l=sqrt{2}-1$

    即$underset{x o infty }{mathop{lim }}\,{{x}_{2n+1}}=sqrt{2}-1=A$

    同理可证$underset{x o infty }{mathop{lim }}\,{{x}_{2n}}=sqrt{2}-1=A$

    于是$underset{n o +infty }{mathop{lim }}\,{{x}_{n}}=underset{n o +infty }{mathop{lim }}\,{{x}_{2n}}=underset{n o +infty }{mathop{lim }}\,{{x}_{2n+1}}=A$

    (3)证明:不妨设${{a}_{n}}={{x}_{n}}-A={{x}_{n}}-(sqrt{2}-1)$

    于是

    $underset{n o +infty }{mathop{lim }}\,left| frac{{{a}_{n+1}}}{{{a}_{n}}} ight|=underset{n o +infty }{mathop{lim }}\,left| frac{{{x}_{n+1}}-A}{{{x}_{n}}-A} ight|=underset{n o +infty }{mathop{lim }}\,left| frac{frac{1}{2}(1-x_{n}^{2})-A}{{{x}_{n}}-A} ight|=underset{n o +infty }{mathop{lim }}\,frac{1}{2}left| frac{1-x_{n}^{2}-(2sqrt{2}-2)}{{{x}_{n}}-(sqrt{2}-1)} ight|=underset{n o +infty }{mathop{lim }}\,frac{1}{2}left| frac{x_{n}^{2}-{{(sqrt{2}-1)}^{2}}}{{{x}_{n}}-(sqrt{2}-1)} ight|=A1 $

    于是$sumlimits_{n=1}^{+infty }{({{x}_{n}}}-A)$绝对收敛

    二、

    (1)成立,理由如下:

    要证明${{sin }^{3}}left| f(x) ight|$在$I$上一致连续,只需证明$left| f(x) ight|$在$I$上一致连续即可

    由于$f(x)$在$I$上一致连续,则对任意的$varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}in I$,存在$delta 0$,当

    $left| {{x}_{1}}-{{x}_{2}} ight|delta $时,有$left| f({{x}_{1}})-f({{x}_{2}}) ight|varepsilon $

    于是对任意的$varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}in I$,存在$delta 0$,当

    $left| {{x}_{1}}-{{x}_{2}} ight|delta $时,有$left| left| f({{x}_{1}}) ight|-left| f({{x}_{2}}) ight| ight|le left| f({{x}_{1}})-f({{x}_{2}}) ight|varepsilon $

    即$left| f(x) ight|$在$I$上一致连续即可

    对任意的$varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}in I$,存在$delta 0$,当

    $left| {{x}_{1}}-{{x}_{2}} ight|delta $时,有

    $left| {{sin }^{3}}left| f({{x}_{1}}) ight|-{{sin }^{3}}left| f({{x}_{1}}) ight| ight|=left| (sin left| f({{x}_{1}}) ight|-sin left| f({{x}_{1}}) ight|)({{sin }^{2}}left| f({{x}_{1}}) ight|+sin left| f({{x}_{1}}) ight|sin left| f({{x}_{2}}) ight|+{{sin }^{2}}left| f({{x}_{2}}) ight| ight|$$le 3left| sin left| f({{x}_{1}}) ight|-sin left| f({{x}_{1}}) ight| ight|le 3left| sin f({{x}_{1}})-sin f({{x}_{2}}) ight|le 3left| f({{x}_{1}})-f({{x}_{2}}) ight|$

    于是由复合函数的一致收敛性可知:${{sin }^{3}}left| f(x) ight|$在$I$上一致连续

    (4)成立,理由如下

    要证明${{sin }^{3}}f(x)$在$I$上一致连续,只需证明$f(x)$在$I$上一致连续即可

    由于$left| f(x) ight|$在$I$上一致连续,则对任意的$varepsilon 0$,任意的${{x}_{1}},{{x}_{2}}in I$,存在$delta 0$,当

    $left| {{x}_{1}}-{{x}_{2}} ight|delta $时,由$left| left| f({{x}_{1}}) ight|-left| f({{x}_{2}}) ight| ight|frac{varepsilon }{2}$

    1:若$f({{x}_{1}}),f({{x}_{2}})$同号,则有$left| f({{x}_{1}})-f({{x}_{2}}) ight|frac{varepsilon }{2}varepsilon $

    2:若$f({{x}_{1}}),f({{x}_{2}})$同号,由$f(x)$连续,则存在$y$在${{x}_{1}},{{x}_{2}}$之间使得$f(y)=0$

    于是$left| f({{x}_{1}})-f({{x}_{2}}) ight|le left| f({{x}_{1}}) ight|+left| f({{x}_{2}}) ight|=left| left| f({{x}_{1}}) ight|-left| f(y) ight| ight|+left| left| f({{x}_{2}}) ight|-left| f(y) ight| ight|varepsilon $

    由1,2可知,$f(x)$在$I$上一致连续

    再利用复合函数的一致连续性可知,${{sin }^{3}}f(x)$在$I$上一致连续

    三、证明:

    充分性:反证法:假设对任意的$xin (a,b)$都有$f(x)le frac{f(b)-f(a)}{b-a}$

    令$g(x)=f(x)-frac{f(b)-f(a)}{b-a}(x-a)$

    则当$xin (a,b)$时有$g(x)=f(x)-frac{f(b)-f(a)}{b-a}le 0$

    于是$g(x)$在$[a,b]$上单调递减

    而$g(a)=g(b)=f(a)$

    从而当$xin [a,b]$时,$g(x)=f(a)$

    于是$f(x)=frac{f(b)-f(a)}{b-a}(x-a)+f(a)$矛盾

    从而必存在$xi in (a,b)$,使得$f(xi )frac{f(b)-f(a)}{b-a}$

    必要性:

    令$g(x)=f(x)-frac{f(b)-f(a)}{b-a}(x-a)$

    则$g(a)=g(b)=f(a)$

    反证法:

    1:若$f(x)$为常函数,则$g(x)=f(x)-frac{f(b)-f(a)}{b-a}=-frac{f(b)-f(a)}{b-a},xin [a,b]$

    这与存在$xi in (a,b) $,使得$f(xi )frac{f(b)-f(a)}{b-a}$矛盾

    2:若$f(x)$为线性函数,可知$g(x)=f(x)-frac{f(b)-f(a)}{b-a}$为常数

    又由于存在$xi in (a,b) $,使得$f(xi )frac{f(b)-f(a)}{b-a}$可知,$g(x)0$

    于是$g(x)$在$[a,b]$上严格单调递增

    而$g(a)=g(b)=f(a)$矛盾

    从而由1,2可知,$f(x)$不为常函数或线性函数

    四、

    (1)证明:设$Fleft( x,y ight)={{x}^{2}}+y-cos left( xy ight) $,

    显然,有$Fleft( 0,1 ight)=0 $,

    ${{F}_{y}}left( x,y ight)=1+xsin left( xy ight) $,

    ${{F}_{y}}left( 0,1 ight)=1 e 0 $,由隐函数存在定理,

    存在$delta 0 $,存在$left[ -delta ,delta ight] $上的连续可微的函数$y=yleft( x ight)$,$yleft( 0 ight)=1 $,

    满足$Fleft( x,yleft( x ight) ight)equiv 0 $,$xin U(0) $

    (3)证明:由(1)可知:

    ${{F}_{x}}left( x,y ight)=2x+ysin left( xy ight) $,

    ${y}left( x ight)=-frac{{{F}_{x}}left( x,y ight)}{{{F}_{y}}left( x,y ight)}=-frac{2x+ysin left( xy ight)}{1+xsin left( xy ight)} $,

    当$0xdelta $,($delta 0 $充分小)时,有${y}left( x ight)0 $,$yleft( x ight) $在$left[ 0,delta ight] $上严格单调递减;

    当$-delta x0 $时,有${y}left( x ight)0 $,$yleft( x ight) $在$left[ -delta ,0 ight] $上严格单调递增,

    五、

    (1)解:(1)由偏导数的定义:

    ${{f}_{x}}(0,0)=underset{Delta x o 0}{mathop{lim }}\,frac{f(Delta x,0)-f(0,0)}{Delta x}=underset{Delta x o 0}{mathop{lim }}\,Delta xcos frac{1}{left| Delta x ight|}=0 $

    ${{f}_{y}}(0,0)=underset{Delta y o 0}{mathop{lim }}\,frac{f(0,Delta y)-f(0,0)}{Delta y}=underset{Delta y o 0}{mathop{lim }}\,Delta ycos frac{1}{left| Delta y ight|}=0 $

    (2)当$(x,y) e (0,0)$时,

    ${{f}_{x}}(x,y)=2xcos frac{1}{sqrt{{{x}^{2}}+{{y}^{2}}}}+frac{x}{sqrt{{{x}^{2}}+{{y}^{2}}}}sin frac{1}{sqrt{{{x}^{2}}+{{y}^{2}}}} $

    ${{f}_{y}}(x,y)=2ycos frac{1}{sqrt{{{x}^{2}}+{{y}^{2}}}}+frac{y}{sqrt{{{x}^{2}}+{{y}^{2}}}}sin frac{1}{sqrt{{{x}^{2}}+{{y}^{2}}}} $

    于是${f_x}(x,y)=left{egin{array}{ll}2xcos frac{1}{{sqrt {{x^2} + {y^2}} }} + frac{x}{{sqrt {{x^2} + {y^2}} }}sin frac{1}{{sqrt {{x^2} + {y^2}} }}, hbox{${x^2} + {y^2} e 0$} \0, hbox{${x^2} + {y^2} = 0$.}end{array} ight.$
    ${f_y}(x,y)=left{egin{array}{ll}2ycos frac{1}{{sqrt {{x^2} + {y^2}} }} + frac{y}{{sqrt {{x^2} + {y^2}} }}sin frac{1}{{sqrt {{x^2} + {y^2}} }},, hbox{${x^2} + {y^2} e 0$} \ 0, hbox{${x^2} + {y^2} = 0$.}end{array} ight.$

    (2)设$y=kx$,于是$underset{x o 0}{mathop{lim }}\,frac{x}{sqrt{{{x}^{2}}+{{y}^{2}}}}=frac{1}{sqrt{1+{{k}^{2}}}}$与$k$有关

    于是$underset{x o 0}{mathop{lim }}\,{{f}_{x}}(x,0) $不存在,故${{f}_{x}}(x,y) $在(0,0)不连续。

    同理${{f}_{y}}(x,y) $ 在(0,0)也不连续。

    (3)设$u=f(x,y) $,则在(0,0)点有

    $Delta u-du=[f(Delta x,Delta y)-f(0,0)]-[{{f}_{x}}(0,0)Delta x+{{f}_{y}}(0,0)Delta y]=(Delta {{x}^{2}}+Delta {{y}^{2}})cos frac{1}{sqrt{Delta {{x}^{2}}+Delta {{y}^{2}}}} $

    因$underset{Delta x o 0,Delta y o 0}{mathop{lim }}\,frac{Delta u-du}{sqrt{Delta {{x}^{2}}+Delta {{y}^{2}}}}=underset{Delta x o 0,Delta y o 0}{mathop{lim }}\,sqrt{Delta {{x}^{2}}+Delta {{y}^{2}}}cos frac{1}{sqrt{Delta {{x}^{2}}+Delta {{y}^{2}}}}=0$

    故$f(x,y) $在(0,0)可微。

    六、解:由于$y=x+y,y(0)=1$

    利用常数变易法求得$y=-1-x+2{{e}^{x}}$

    记${{a}_{n}}=y(frac{1}{n})-1-frac{1}{n}=2({{e}^{frac{1}{n}}}-1-frac{1}{n})$

    由$underset{n o +infty }{mathop{lim }}\,sqrt[n]{{{a}_{n}}}={{e}^{underset{n o +infty }{mathop{lim }}\,frac{ln {{a}_{n}}}{n}}}={{e}^{underset{n o +infty }{mathop{lim }}\,frac{ln 2({{e}^{frac{1}{n}}}-1-frac{1}{n})}{n}}}overset{n=frac{1}{x}}{mathop{=}}\,{{e}^{underset{x o +{{0}^{+}}}{mathop{lim }}\,frac{ln 2({{e}^{x}}-1-x)}{frac{1}{x}}}}={{e}^{-underset{x o +{{0}^{+}}}{mathop{lim }}\,frac{{{x}^{2}}({{e}^{x}}-1)}{{{e}^{x}}-1-x}}}={{e}^{-underset{x o +{{0}^{+}}}{mathop{lim }}\,frac{{{x}^{2}}[x+o(x)]}{frac{{{x}^{2}}}{2}+o({{x}^{2}})}}}=1 $

    于是幂级数的收敛半径$R=1$

    又由于$x=1$时,$y(frac{1}{n})-1-frac{1}{n}=2({{e}^{frac{1}{n}}}-1-frac{1}{n})=sumlimits_{n=1}^{+infty }{frac{2}{{{n}^{2}}}+}sumlimits_{n=1}^{+infty }{o(frac{2}{{{n}^{2}}}})$收敛

    $x=-1$时,由莱布利兹判别法可知级数收敛

    于是该幂级数的收敛域为$[-1,1]$

    七、

    (1)证明:令$u={{t}^{2}}Rightarrow t=sqrt{u},dt=frac{1}{2sqrt{u}}du$,于是$int_{x}^{x+c}{sin {{t}^{2}}}dt=frac{1}{2}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{frac{sin u}{sqrt{u}}}du $

    而函数$frac{1}{sqrt{u}}$在$[{{x}^{2}},{{(x+c)}^{2}}]$上递减,且$frac{1}{sqrt{u}}ge 0$,由积分第二中值定理可知:

    存在$xi in [{{x}^{2}},{{(x+c)}^{2}}]$,使得

    $int_{x}^{x+c}{sin {{t}^{2}}}dt=frac{1}{2}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{frac{sin u}{sqrt{u}}}du=frac{1}{2x}int_{{{x}^{2}}}^{xi }{sin udu=frac{1}{2x}(cos {{x}^{2}}-cos xi )} $

    故$left| int_{x}^{x+c}{sin {{t}^{2}}}dt ight|le frac{1}{x}$

    (2)能,理由如下

    证明:

    令$f(x)=int_{x}^{x+c}{sin {{t}^{2}}}dt=frac{1}{2}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{frac{sin u}{sqrt{u}}}du=-frac{1}{2}frac{cos u}{sqrt{u}}|_{{{x}^{2}}}^{{{(x+c)}^{2}}}-frac{1}{4}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{frac{sin u}{{{u}^{frac{3}{2}}}}}du$

    $=frac{cos {{x}^{2}}}{2x}-frac{cos {{(x+c)}^{2}}}{2(x+c)}-frac{1}{4}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{frac{sin u}{{{u}^{frac{3}{2}}}}}du$

    存在${{u}_{0}}in [{{x}^{2}},{{(x+c)}^{2}}]$,使得$left| frac{cos {{u}_{0}}}{u_{0}^{frac{3}{2}}} ight|frac{1}{{{u}^{frac{3}{2}}}}$,因此当$x0$时,有

    $left| f(x) ight|le left| frac{cos {{x}^{2}}}{2x} ight|+left| frac{cos {{(x+c)}^{2}}}{2(x+c)} ight|+frac{1}{4}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{left| frac{cos u}{{{u}^{frac{3}{2}}}} ight|}dufrac{1}{2x}+frac{1}{2(x+c)}+frac{1}{4}int_{{{x}^{2}}}^{{{(x+c)}^{2}}}{frac{1}{{{u}^{frac{3}{2}}}}}du $

    $=frac{1}{2x}+frac{1}{2(x+c)}+frac{1}{4}(-2{{u}^{-frac{1}{2}}})|_{{{x}^{2}}}^{{{(x+c)}^{2}}}=frac{1}{x}$

    八、证明:对${{R}^{2}}$上任意一点$({{x}_{0}},{{y}_{0}})$,令${{L}_{1}}={x|{{(x-{{x}_{0}})}^{2}}={{r}^{2}}}$,方向取逆时针

    由格林公式可知:

    $int_{L}{Pdx+Qdy=}int_{L+{{L}_{1}}}{Pdx+Qdy=iint_{D}{[frac{partial Q}{partial x}}}-frac{partial P}{partial y}]dxdy=[frac{partial Q}{partial x}-frac{partial P}{partial y}]{{|}_{M}}pi {{r}^{2}}=0$

    其中$D$是由$L+{{L}_{1}}$包围的图形,$Min D$

    另一方面由积分中值定理可知:

    $int_{L}{Pdx+Qdy=}-int_{{{L}_{1}}}{P(x,{{y}_{0}}})dx=-P({{x}_{1}},{{y}_{0}})cdot 2r$

    其中$({{x}_{1}},{{y}_{0}})in {{L}_{1}}$

    比较这两个式子知:

    $[frac{partial Q}{partial x}-frac{partial P}{partial y}]{{|}_{M}}pi {{r}^{2}}=-P({{x}_{1}},{{y}_{0}})cdot 2rRightarrow [frac{partial Q}{partial x}-frac{partial P}{partial y}]{{|}_{M}}frac{pi r}{2}=-P({{x}_{1}},{{y}_{0}})$

    令$r o 0$可知:$P({{x}_{0}},{{y}_{0}})=0$,由$({{x}_{0}},{{y}_{0}})$的任意性可知,$P(x,y)=0$

    从而有 $[frac{partial Q}{partial x}-frac{partial P}{partial y}]{{|}_{M}}$,令$r o 0$可知$[frac{partial Q}{partial x}-frac{partial P}{partial y}]{{|}_{({{x}_{0}},{{y}_{0}})}}=0$,由$({{x}_{0}},{{y}_{0}})$的任意性可知,$frac{partial Q}{partial x}=0$

     

  • 相关阅读:
    Asp.net如何连接SQL Server2000数据库
    是男人,都可以看看这个
    体验Flash MX(8):控制时钟Timer
    好代码
    sql 大数据量插入优化
    Xcode 真机程序发布测试
    Xcode 真机程序发布测试
    用git备份代码
    sql 大数据量插入优化
    UIView学习笔记
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4053853.html
Copyright © 2011-2022 走看看