zoukankan      html  css  js  c++  java
  • [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.9

    (1). When $A$ is normal, the set $W(A)$ is the convex hull of the eigenvalues of $A$. For nonnormal matrices, $W(A)$ may be bigger than the convex hull of its eigenvalues. For Hermitian operators, the first statement says that $W(A)$ is the close interval whose endpoints are the smallest and the largest eigenvalues of $A$.

     

    (2). If a unit vector $x$ belongs to the linear span of the eigenspaces corresponding to eigenvalues $lm_1,cdots,lm_k$ of a normal operator $A$, then $sef{x,Ax}$ lies in the convex hull of $lm_1,cdots,lm_k$. (This fact will be used frequently in Chapter III.)

     

    Solution.

     

    (1). When $A$ is normal, by the spectral theorem, there exists a unitary $U$ such that $$ex A=Udiag(lm_1,cdots,lm_n)U^*, eex$$ and thus $$eex ea W(A)&=sed{x^*Ax;sen{x}=1}\ &=sed{x^*Udiag(lm_1,cdots,lm_n)U^*x;sen{x}=1}\ &=sed{sum_{i=1}^n lm_i|y_i|^2; sum_{i=1}^n |y_i|^2=1, y=U^*x}\ &=cosed{lm_1,cdots,lm_n}. eea eeex$$

     

    (2). Let $u_1,cdots,u_k$ be the first $k$ column vector of $U$, then $$ex Au_i=lm_iu_i,quad 1leq ileq k. eex$$ If $$ex x=sum_{i=1}^k x_iu_i,quad sen{x}=1 a sum_{i=1}^k |x_i|^2=1, eex$$ then $$eex ea sef{x,Ax}&=sef{sum_{i=1}^k x_iu_i,Asum_{j=1}^k x_ju_j}\ &=sef{sum_{i=1}^k x_iu_i,sum_{j=1}^klm_j x_ju_j}\ &=sum_{i=1}^k |x_i|^2lm_i\ &in cosed{lm_1,cdots,lm_k}. eea eeex$$

  • 相关阅读:
    IIS服务器应用程序不可用的解决办法
    C#几个经常犯错误汇总
    C1flexgrid格式化
    图片自动按比例缩小代码(防止页面被图片撑破)
    VSS2005的使用与配置过程
    ASP.NET通过IHttpModule实现伪静态
    五一游玩收藏
    plants
    几个JS的方法
    英式英语VS美式英语的差异
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4106628.html
Copyright © 2011-2022 走看看