zoukankan      html  css  js  c++  java
  • [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k imes k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$, $1leq jleq k$, can be found so that $a_{ij}=sef{x_i,x_j}$ for all $i,j$.

     

    Solution. By Exercise I.2.2, $A=B^*B$ for some $B$. Let $$ex B=(x_1,cdots,x_k). eex$$ Then $$ex A=sex{sef{x_i,x_j}}. eex$$

  • 相关阅读:
    3-1
    3-2
    习题二 8
    习题二 3
    习题二 5
    习题二 4
    习题二 6
    实验三-2未完成
    实验三
    心得
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4115285.html
Copyright © 2011-2022 走看看