zoukankan      html  css  js  c++  java
  • [家里蹲大学数学杂志]第391期山东大学2014-2015-1微分几何期末考试试题

    注意:

    A. 卷面分 $5$ 分, 试题总分 $95$ 分. 其中卷面整洁, 书写规范 ($5$ 分); 卷面较整洁, 书写较规范 ($3$ 分); 书写潦草, 乱涂乱画 ($0$ 分).

    B. 可能用的公式: $$eex ea 1.& vGa_{ij}^k=frac{1}{2}sum g^{kl}sex{frac{p g_{il}}{p u^j} +frac{p g_{jl}}{p u^i}-frac{p g_{ij}}{p u^l}}.\ 2.& int frac{ d x}{a+b cos x} =frac{2}{sqrt{a^2-b^2}}arctan sex{sqrt{frac{a-b}{a+b}} an frac{x}{2}},quad (a>b). eea eeex$$

     

    14:00-16:30, Jan. 20, 2015

     

    1. ($15$ points).

    (1). Find the curvature and torsion of $al(t)=(cos t,sin t,3t)$.

    (2). Suppose $gm$ is an arc length parametrized curve with the property that $$ex |gm(s)|leq |gm(s_0)|=R eex$$ for all $s$ sufficiently close to $s_0$. Prove that the curvature $kappa(s_0)geq 1/R$.

     

    2. ($10$ points) Suppose $x$ is coordinate patch such that $g_{11}=1$ and $g_{12}=0$. Prove that the $u^1$ - curve are geodesic.

     

    3. ($20$ points) Let $X_N$ be the tangential component of the normal vector $N$ of a unit speed curve $gm$ on a surface $M$. let $n$ be the unit normal vector to a coordinate patch in $M$.

    (1). Prove ethat $X_N=N-sef{N,n}n$ and $X_N$ is a vector field along $gm$.

    (2). Prove that the following are equivalent:

      (i). $X_N=0$.

      (ii). $gm$ is a geodesic.

      (iii). $X_N$ is parallel along $gm$.

     

    4. ($20$ points).

    (1). State the local Gauss-Bonnet formula.

    (2). Let $x(u,v)=(cos ucos v,cos usin v,sin u)$ be the unit sphere. Let $R$ be the region bounded by the meridians $v=0, pi/2$ and the circles of latitude $u=0, pi/4$. Checking the local Gassu-Bonnet formula for the regin $R$.

     

    5. ($30$ points) Consider the torus $T$ parametrized by $x:[0,2pi]^2 obR^3$ with $$ex x(u,v)=((a+cos u)cos v,(a+cos u)sin v,sin u),quad a>1. eex$$

    (1). Compute the first and second fundamental forms.

    (2). Compute the Gaussian curvature $K$ and the mean curvature $H$.

    (3). Find the elliptic, hyperbolic and parabolic points.

    (4). Checking the global Gauss-Bonnet formula for the torus $T$: $$ex iint_T K d A=2pi chi(T). eex$$

    (5). Show the Willmore inequality: $$ex iint_T H^2 d Ageq 2pi^2. eex$$ 

    从 herbertfederer 处看到, 他从 数学文化新浪微博 转的.

  • 相关阅读:
    ruby 实现java中的aes 加密解密
    移动端手机端web页面中背景图固定问题
    hooks 组件对应的生命周期
    React 生命周期函数总结
    Sequelize 常用增删改查函数
    如何验证SSH的连通性
    如何生成SSH密钥
    如何查看本机ssh秘钥
    如何更改本地代码仓库指向
    如何发布npm 包
  • 原文地址:https://www.cnblogs.com/zhangzujin/p/4271757.html
Copyright © 2011-2022 走看看