zoukankan      html  css  js  c++  java
  • hdu3549Flow Problem【最大流】

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 6817    Accepted Submission(s): 3178


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1 Case 2: 2
     
    Author
    HyperHexagon
     
    Source
    题意:最大流
    分析:最大流模板
    代码:
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <queue>
      5 #include <vector>
      6 using namespace std;
      7 
      8 const int maxn = 20  << 1;
      9 const int INF = 1000000000;
     10 
     11 struct Edge
     12 {
     13     int from, to, cap, flow;
     14 };
     15 
     16 struct Dinic
     17 {
     18     int n, m, s, t;
     19     vector<Edge> edges;
     20     vector<int>G[maxn];
     21     bool vis[maxn];
     22     int d[maxn];
     23     int cur[maxn];
     24 
     25     void ClearAll(int n) {
     26         for(int i = 0; i <= n; i++) {
     27             G[i].clear();
     28         }
     29         edges.clear();
     30     }
     31 
     32     void AddEdge(int from, int to, int cap) {
     33         edges.push_back((Edge){from, to, cap, 0} );
     34         edges.push_back((Edge){to, from, 0, 0} );
     35         m = edges.size();
     36         G[from].push_back(m - 2);
     37         G[to].push_back(m - 1);
     38         //printf("%din end
    ",m);
     39     }
     40 
     41     bool BFS()
     42     {
     43         memset(vis, 0, sizeof(vis) );
     44         queue<int> Q;
     45         Q.push(s);
     46         vis[s] = 1;
     47         d[s] = 0;
     48         while(!Q.empty() ){
     49             int x = Q.front(); Q.pop();
     50             for(int i = 0; i < G[x].size(); i++) {
     51                 Edge& e = edges[G[x][i]];
     52                 if(!vis[e.to] && e.cap > e.flow) {
     53                     vis[e.to] = 1;
     54                     d[e.to] = d[x] + 1;
     55                     Q.push(e.to);
     56                 }
     57             }
     58         }
     59         return vis[t];
     60     }
     61 
     62     int DFS(int x, int a) {
     63         if(x == t || a == 0) return a;
     64         int flow = 0, f;
     65         for(int& i = cur[x]; i < G[x].size(); i++) {
     66             Edge& e = edges[G[x][i]];
     67             if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
     68                 e.flow += f;
     69                 edges[G[x][i]^1].flow -= f;
     70                 flow += f;
     71                 a -= f;
     72                 if(a == 0) break;
     73             }
     74         }
     75         return flow;
     76     }
     77 
     78     int Maxflow(int s, int t) {
     79         this -> s = s; this -> t = t;
     80         int flow = 0;
     81         while(BFS()) {
     82             memset(cur, 0, sizeof(cur) );
     83             flow += DFS(s, INF);
     84         }
     85         return flow;
     86     }
     87 };
     88 
     89 Dinic g;
     90 
     91 int main()
     92 {
     93     int t;
     94     scanf("%d",&t);
     95     int n, m;
     96     int a, b, c;
     97     for(int kase = 1; kase <= t; kase++) {
     98         scanf("%d %d",&n, &m);
     99         g.ClearAll(maxn);
    100         for(int i = 0;i < m; i++ ) {
    101             scanf("%d %d %d",&a, &b, &c);
    102             g.AddEdge(a, b, c);
    103         }
    104         printf("Case %d: %d
    ",kase, g.Maxflow(1, n) );
    105     }
    106     return 0;
    107 }
    View Code
  • 相关阅读:
    UOJ#80. 二分图最大权匹配 模板
    BZOJ2243: [SDOI2011]染色
    LA5713 Qin Shi Huang's National Road System
    BZOJ1977: [BeiJing2010组队]次小生成树 Tree
    LA5009 Error Curves
    BZOJ1013: [JSOI2008]球形空间产生器sphere
    BZOJ2733: [HNOI2012]永无乡
    BZOJ1552: [Cerc2007]robotic sort
    BZOJ3223: Tyvj 1729 文艺平衡树
    网络流24题(24/24)
  • 原文地址:https://www.cnblogs.com/zhanzhao/p/3754845.html
Copyright © 2011-2022 走看看