zoukankan      html  css  js  c++  java
  • hdu3549Flow Problem【最大流】

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 6817    Accepted Submission(s): 3178


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1 Case 2: 2
     
    Author
    HyperHexagon
     
    Source
    题意:最大流
    分析:最大流模板
    代码:
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <queue>
      5 #include <vector>
      6 using namespace std;
      7 
      8 const int maxn = 20  << 1;
      9 const int INF = 1000000000;
     10 
     11 struct Edge
     12 {
     13     int from, to, cap, flow;
     14 };
     15 
     16 struct Dinic
     17 {
     18     int n, m, s, t;
     19     vector<Edge> edges;
     20     vector<int>G[maxn];
     21     bool vis[maxn];
     22     int d[maxn];
     23     int cur[maxn];
     24 
     25     void ClearAll(int n) {
     26         for(int i = 0; i <= n; i++) {
     27             G[i].clear();
     28         }
     29         edges.clear();
     30     }
     31 
     32     void AddEdge(int from, int to, int cap) {
     33         edges.push_back((Edge){from, to, cap, 0} );
     34         edges.push_back((Edge){to, from, 0, 0} );
     35         m = edges.size();
     36         G[from].push_back(m - 2);
     37         G[to].push_back(m - 1);
     38         //printf("%din end
    ",m);
     39     }
     40 
     41     bool BFS()
     42     {
     43         memset(vis, 0, sizeof(vis) );
     44         queue<int> Q;
     45         Q.push(s);
     46         vis[s] = 1;
     47         d[s] = 0;
     48         while(!Q.empty() ){
     49             int x = Q.front(); Q.pop();
     50             for(int i = 0; i < G[x].size(); i++) {
     51                 Edge& e = edges[G[x][i]];
     52                 if(!vis[e.to] && e.cap > e.flow) {
     53                     vis[e.to] = 1;
     54                     d[e.to] = d[x] + 1;
     55                     Q.push(e.to);
     56                 }
     57             }
     58         }
     59         return vis[t];
     60     }
     61 
     62     int DFS(int x, int a) {
     63         if(x == t || a == 0) return a;
     64         int flow = 0, f;
     65         for(int& i = cur[x]; i < G[x].size(); i++) {
     66             Edge& e = edges[G[x][i]];
     67             if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
     68                 e.flow += f;
     69                 edges[G[x][i]^1].flow -= f;
     70                 flow += f;
     71                 a -= f;
     72                 if(a == 0) break;
     73             }
     74         }
     75         return flow;
     76     }
     77 
     78     int Maxflow(int s, int t) {
     79         this -> s = s; this -> t = t;
     80         int flow = 0;
     81         while(BFS()) {
     82             memset(cur, 0, sizeof(cur) );
     83             flow += DFS(s, INF);
     84         }
     85         return flow;
     86     }
     87 };
     88 
     89 Dinic g;
     90 
     91 int main()
     92 {
     93     int t;
     94     scanf("%d",&t);
     95     int n, m;
     96     int a, b, c;
     97     for(int kase = 1; kase <= t; kase++) {
     98         scanf("%d %d",&n, &m);
     99         g.ClearAll(maxn);
    100         for(int i = 0;i < m; i++ ) {
    101             scanf("%d %d %d",&a, &b, &c);
    102             g.AddEdge(a, b, c);
    103         }
    104         printf("Case %d: %d
    ",kase, g.Maxflow(1, n) );
    105     }
    106     return 0;
    107 }
    View Code
  • 相关阅读:
    手机测试移动端项目
    事件绑定与事件委托
    jq中attr()和prop() 属性的区别
    jq 加载的几种方法
    $(document).height 与$(window).height的区别
    js动画之缓冲运动
    js动画之简单运动二
    js动画之简单运动一
    css浏览器窗口大小
    编程每一天
  • 原文地址:https://www.cnblogs.com/zhanzhao/p/3754845.html
Copyright © 2011-2022 走看看