zoukankan      html  css  js  c++  java
  • hdu3549Flow Problem【最大流】

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 6817    Accepted Submission(s): 3178


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1 Case 2: 2
     
    Author
    HyperHexagon
     
    Source
    题意:最大流
    分析:最大流模板
    代码:
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <queue>
      5 #include <vector>
      6 using namespace std;
      7 
      8 const int maxn = 20  << 1;
      9 const int INF = 1000000000;
     10 
     11 struct Edge
     12 {
     13     int from, to, cap, flow;
     14 };
     15 
     16 struct Dinic
     17 {
     18     int n, m, s, t;
     19     vector<Edge> edges;
     20     vector<int>G[maxn];
     21     bool vis[maxn];
     22     int d[maxn];
     23     int cur[maxn];
     24 
     25     void ClearAll(int n) {
     26         for(int i = 0; i <= n; i++) {
     27             G[i].clear();
     28         }
     29         edges.clear();
     30     }
     31 
     32     void AddEdge(int from, int to, int cap) {
     33         edges.push_back((Edge){from, to, cap, 0} );
     34         edges.push_back((Edge){to, from, 0, 0} );
     35         m = edges.size();
     36         G[from].push_back(m - 2);
     37         G[to].push_back(m - 1);
     38         //printf("%din end
    ",m);
     39     }
     40 
     41     bool BFS()
     42     {
     43         memset(vis, 0, sizeof(vis) );
     44         queue<int> Q;
     45         Q.push(s);
     46         vis[s] = 1;
     47         d[s] = 0;
     48         while(!Q.empty() ){
     49             int x = Q.front(); Q.pop();
     50             for(int i = 0; i < G[x].size(); i++) {
     51                 Edge& e = edges[G[x][i]];
     52                 if(!vis[e.to] && e.cap > e.flow) {
     53                     vis[e.to] = 1;
     54                     d[e.to] = d[x] + 1;
     55                     Q.push(e.to);
     56                 }
     57             }
     58         }
     59         return vis[t];
     60     }
     61 
     62     int DFS(int x, int a) {
     63         if(x == t || a == 0) return a;
     64         int flow = 0, f;
     65         for(int& i = cur[x]; i < G[x].size(); i++) {
     66             Edge& e = edges[G[x][i]];
     67             if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
     68                 e.flow += f;
     69                 edges[G[x][i]^1].flow -= f;
     70                 flow += f;
     71                 a -= f;
     72                 if(a == 0) break;
     73             }
     74         }
     75         return flow;
     76     }
     77 
     78     int Maxflow(int s, int t) {
     79         this -> s = s; this -> t = t;
     80         int flow = 0;
     81         while(BFS()) {
     82             memset(cur, 0, sizeof(cur) );
     83             flow += DFS(s, INF);
     84         }
     85         return flow;
     86     }
     87 };
     88 
     89 Dinic g;
     90 
     91 int main()
     92 {
     93     int t;
     94     scanf("%d",&t);
     95     int n, m;
     96     int a, b, c;
     97     for(int kase = 1; kase <= t; kase++) {
     98         scanf("%d %d",&n, &m);
     99         g.ClearAll(maxn);
    100         for(int i = 0;i < m; i++ ) {
    101             scanf("%d %d %d",&a, &b, &c);
    102             g.AddEdge(a, b, c);
    103         }
    104         printf("Case %d: %d
    ",kase, g.Maxflow(1, n) );
    105     }
    106     return 0;
    107 }
    View Code
  • 相关阅读:
    【转载】Python正则表达式指南
    Redis4.0模块子系统实现简述
    Redis4.0 主从复制(PSYN2.0)
    13种细分类型的TCP重传小结(一张表总结4.4内核所有TCP重传场景)
    TCP/IP Illustrated Vol1 Second Edition即英文版第二版,TCP部分个人勘误
    TCP源码—epoll源码及测试
    TCP系列55—拥塞控制—18、其他拥塞控制算法及相关内容概述
    TCP系列54—拥塞控制—17、AQM及ECN
    TCP系列53—拥塞控制—16、Destination Metrics和Congestion Manager
    TCP系列52—拥塞控制—15、前向重传与RACK重传拥塞控制处理对比
  • 原文地址:https://www.cnblogs.com/zhanzhao/p/3754845.html
Copyright © 2011-2022 走看看