zoukankan      html  css  js  c++  java
  • hdu3549Flow Problem【最大流】

    Flow Problem

    Time Limit: 5000/5000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
    Total Submission(s): 6817    Accepted Submission(s): 3178


    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2 3 2 1 2 1 2 3 1 3 3 1 2 1 2 3 1 1 3 1
     
    Sample Output
    Case 1: 1 Case 2: 2
     
    Author
    HyperHexagon
     
    Source
    题意:最大流
    分析:最大流模板
    代码:
      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 #include <queue>
      5 #include <vector>
      6 using namespace std;
      7 
      8 const int maxn = 20  << 1;
      9 const int INF = 1000000000;
     10 
     11 struct Edge
     12 {
     13     int from, to, cap, flow;
     14 };
     15 
     16 struct Dinic
     17 {
     18     int n, m, s, t;
     19     vector<Edge> edges;
     20     vector<int>G[maxn];
     21     bool vis[maxn];
     22     int d[maxn];
     23     int cur[maxn];
     24 
     25     void ClearAll(int n) {
     26         for(int i = 0; i <= n; i++) {
     27             G[i].clear();
     28         }
     29         edges.clear();
     30     }
     31 
     32     void AddEdge(int from, int to, int cap) {
     33         edges.push_back((Edge){from, to, cap, 0} );
     34         edges.push_back((Edge){to, from, 0, 0} );
     35         m = edges.size();
     36         G[from].push_back(m - 2);
     37         G[to].push_back(m - 1);
     38         //printf("%din end
    ",m);
     39     }
     40 
     41     bool BFS()
     42     {
     43         memset(vis, 0, sizeof(vis) );
     44         queue<int> Q;
     45         Q.push(s);
     46         vis[s] = 1;
     47         d[s] = 0;
     48         while(!Q.empty() ){
     49             int x = Q.front(); Q.pop();
     50             for(int i = 0; i < G[x].size(); i++) {
     51                 Edge& e = edges[G[x][i]];
     52                 if(!vis[e.to] && e.cap > e.flow) {
     53                     vis[e.to] = 1;
     54                     d[e.to] = d[x] + 1;
     55                     Q.push(e.to);
     56                 }
     57             }
     58         }
     59         return vis[t];
     60     }
     61 
     62     int DFS(int x, int a) {
     63         if(x == t || a == 0) return a;
     64         int flow = 0, f;
     65         for(int& i = cur[x]; i < G[x].size(); i++) {
     66             Edge& e = edges[G[x][i]];
     67             if(d[x] + 1 == d[e.to] && (f = DFS(e.to, min(a, e.cap - e.flow))) > 0) {
     68                 e.flow += f;
     69                 edges[G[x][i]^1].flow -= f;
     70                 flow += f;
     71                 a -= f;
     72                 if(a == 0) break;
     73             }
     74         }
     75         return flow;
     76     }
     77 
     78     int Maxflow(int s, int t) {
     79         this -> s = s; this -> t = t;
     80         int flow = 0;
     81         while(BFS()) {
     82             memset(cur, 0, sizeof(cur) );
     83             flow += DFS(s, INF);
     84         }
     85         return flow;
     86     }
     87 };
     88 
     89 Dinic g;
     90 
     91 int main()
     92 {
     93     int t;
     94     scanf("%d",&t);
     95     int n, m;
     96     int a, b, c;
     97     for(int kase = 1; kase <= t; kase++) {
     98         scanf("%d %d",&n, &m);
     99         g.ClearAll(maxn);
    100         for(int i = 0;i < m; i++ ) {
    101             scanf("%d %d %d",&a, &b, &c);
    102             g.AddEdge(a, b, c);
    103         }
    104         printf("Case %d: %d
    ",kase, g.Maxflow(1, n) );
    105     }
    106     return 0;
    107 }
    View Code
  • 相关阅读:
    随堂练习 磁盘管理文件系统
    随堂练习 shell脚本(二)
    随堂练习 软件包管理
    随堂练习 压缩和解压缩
    随堂练习 文本处理小工具
    随堂练习 用户和组的权限管理
    随堂练习 bash shell特性和I/O重定向及管道
    随堂练习 Linux 文件管理
    随堂练习 linux 基础知识
    C连载13-复数类型以及基本数据类型总结
  • 原文地址:https://www.cnblogs.com/zhanzhao/p/3754845.html
Copyright © 2011-2022 走看看