zoukankan      html  css  js  c++  java
  • Python爬虫从入门到放弃(十九)之 Scrapy爬取所有知乎用户信息(下)

    在上一篇文章中主要写了关于爬虫过程的分析,下面是代码的实现,完整代码在:
    https://github.com/pythonsite/spider

    items中的代码主要是我们要爬取的字段的定义

    class UserItem(scrapy.Item):
        id = Field()
        name = Field()
        account_status = Field()
        allow_message= Field()
        answer_count = Field()
        articles_count = Field()
        avatar_hue = Field()
        avatar_url = Field()
        avatar_url_template = Field()
        badge = Field()
        business = Field()
        employments = Field()
        columns_count = Field()
        commercial_question_count = Field()
        cover_url = Field()
        description = Field()
        educations = Field()
        favorite_count = Field()
        favorited_count = Field()
        follower_count = Field()
        following_columns_count = Field()
        following_favlists_count = Field()
        following_question_count = Field()
        following_topic_count = Field()
        gender = Field()
        headline = Field()
        hosted_live_count = Field()
        is_active = Field()
        is_bind_sina = Field()
        is_blocked = Field()
        is_advertiser = Field()
        is_blocking = Field()
        is_followed = Field()
        is_following = Field()
        is_force_renamed = Field()
        is_privacy_protected = Field()
        locations = Field()
        is_org = Field()
        type = Field()
        url = Field()
        url_token = Field()
        user_type = Field()
        logs_count = Field()
        marked_answers_count = Field()
        marked_answers_text = Field()
        message_thread_token = Field()
        mutual_followees_count = Field()
        participated_live_count = Field()
        pins_count = Field()
        question_count = Field()
        show_sina_weibo = Field()
        thank_from_count = Field()
        thank_to_count = Field()
        thanked_count = Field()
        type = Field()
        vote_from_count = Field()
        vote_to_count = Field()
        voteup_count = Field()

    这些字段的是在用户详细信息里找到的,如下图所示,这里一共有58个字段,可以详细研究每个字段代表的意思:

    关于spiders中爬虫文件zhihu.py中的主要代码

    这段代码是非常重要的,主要的处理逻辑其实都是在这里

    class ZhihuSpider(scrapy.Spider):
        name = "zhihu"
        allowed_domains = ["www.zhihu.com"]
        start_urls = ['http://www.zhihu.com/']
        #这里定义一个start_user存储我们找的大V账号
        start_user = "excited-vczh"
    
        #这里把查询的参数单独存储为user_query,user_url存储的为查询用户信息的url地址
        user_url = "https://www.zhihu.com/api/v4/members/{user}?include={include}"
        user_query = "locations,employments,gender,educations,business,voteup_count,thanked_Count,follower_count,following_count,cover_url,following_topic_count,following_question_count,following_favlists_count,following_columns_count,avatar_hue,answer_count,articles_count,pins_count,question_count,columns_count,commercial_question_count,favorite_count,favorited_count,logs_count,marked_answers_count,marked_answers_text,message_thread_token,account_status,is_active,is_bind_phone,is_force_renamed,is_bind_sina,is_privacy_protected,sina_weibo_url,sina_weibo_name,show_sina_weibo,is_blocking,is_blocked,is_following,is_followed,mutual_followees_count,vote_to_count,vote_from_count,thank_to_count,thank_from_count,thanked_count,description,hosted_live_count,participated_live_count,allow_message,industry_category,org_name,org_homepage,badge[?(type=best_answerer)].topics"
    
        #follows_url存储的为关注列表的url地址,fllows_query存储的为查询参数。这里涉及到offset和limit是关于翻页的参数,0,20表示第一页
        follows_url = "https://www.zhihu.com/api/v4/members/{user}/followees?include={include}&offset={offset}&limit={limit}"
        follows_query = "data%5B*%5D.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F(type%3Dbest_answerer)%5D.topics"
    
        #followers_url是获取粉丝列表信息的url地址,followers_query存储的为查询参数。
        followers_url = "https://www.zhihu.com/api/v4/members/{user}/followers?include={include}&offset={offset}&limit={limit}"
        followers_query = "data%5B*%5D.answer_count%2Carticles_count%2Cgender%2Cfollower_count%2Cis_followed%2Cis_following%2Cbadge%5B%3F(type%3Dbest_answerer)%5D.topics"
    
    
        def start_requests(self):
            '''
            这里重写了start_requests方法,分别请求了用户查询的url和关注列表的查询以及粉丝列表信息查询
            :return:
            '''
            yield Request(self.user_url.format(user=self.start_user,include=self.user_query),callback=self.parse_user)
            yield Request(self.follows_url.format(user=self.start_user,include=self.follows_query,offset=0,limit=20),callback=self.parse_follows)
            yield Request(self.followers_url.format(user=self.start_user,include=self.followers_query,offset=0,limit=20),callback=self.parse_followers)
    
        def parse_user(self, response):
            '''
            因为返回的是json格式的数据,所以这里直接通过json.loads获取结果
            :param response:
            :return:
            '''
            result = json.loads(response.text)
            item = UserItem()
            #这里循环判断获取的字段是否在自己定义的字段中,然后进行赋值
            for field in item.fields:
                if field in result.keys():
                    item[field] = result.get(field)
    
            #这里在返回item的同时返回Request请求,继续递归拿关注用户信息的用户获取他们的关注列表
            yield item
            yield Request(self.follows_url.format(user = result.get("url_token"),include=self.follows_query,offset=0,limit=20),callback=self.parse_follows)
            yield Request(self.followers_url.format(user = result.get("url_token"),include=self.followers_query,offset=0,limit=20),callback=self.parse_followers)
    
    
    
    
        def parse_follows(self, response):
            '''
            用户关注列表的解析,这里返回的也是json数据 这里有两个字段data和page,其中page是分页信息
            :param response:
            :return:
            '''
            results = json.loads(response.text)
    
            if 'data' in results.keys():
                for result in results.get('data'):
                    yield Request(self.user_url.format(user = result.get("url_token"),include=self.user_query),callback=self.parse_user)
    
            #这里判断page是否存在并且判断page里的参数is_end判断是否为False,如果为False表示不是最后一页,否则则是最后一页
            if 'page' in results.keys() and results.get('is_end') == False:
                next_page = results.get('paging').get("next")
                #获取下一页的地址然后通过yield继续返回Request请求,继续请求自己再次获取下页中的信息
                yield Request(next_page,self.parse_follows)
    
        def parse_followers(self, response):
            '''
            这里其实和关乎列表的处理方法是一样的
            用户粉丝列表的解析,这里返回的也是json数据 这里有两个字段data和page,其中page是分页信息
            :param response:
            :return:
            '''
            results = json.loads(response.text)
    
            if 'data' in results.keys():
                for result in results.get('data'):
                    yield Request(self.user_url.format(user = result.get("url_token"),include=self.user_query),callback=self.parse_user)
    
            #这里判断page是否存在并且判断page里的参数is_end判断是否为False,如果为False表示不是最后一页,否则则是最后一页
            if 'page' in results.keys() and results.get('is_end') == False:
                next_page = results.get('paging').get("next")
                #获取下一页的地址然后通过yield继续返回Request请求,继续请求自己再次获取下页中的信息
                yield Request(next_page,self.parse_followers)

    上述的代码的主要逻辑用下图分析表示:

    关于上图的一个简单描述:
    1. 当重写start_requests,一会有三个yield,分别的回调函数调用了parse_user,parse_follows,parse_followers,这是第一次会分别获取我们所选取的大V的信息以及关注列表信息和粉丝列表信息
    2. 而parse分别会再次回调parse_follows和parse_followers信息,分别递归获取每个用户的关注列表信息和分析列表信息
    3. parse_follows获取关注列表里的每个用户的信息回调了parse_user,并进行翻页获取回调了自己parse_follows
    4. parse_followers获取粉丝列表里的每个用户的信息回调了parse_user,并进行翻页获取回调了自己parse_followers

    通过上面的步骤实现所有用户信息的爬取,最后是关于数据的存储

    关于数据存储到mongodb

    这里主要是item中的数据存储到mongodb数据库中,这里主要的一个用法是就是插入的时候进行了一个去重检测

    class MongoPipeline(object):
    
        def __init__(self, mongo_uri, mongo_db):
            self.mongo_uri = mongo_uri
            self.mongo_db = mongo_db
    
        @classmethod
        def from_crawler(cls, crawler):
            return cls(
                mongo_uri=crawler.settings.get('MONGO_URI'),
                mongo_db=crawler.settings.get('MONGO_DATABASE', 'items')
            )
    
        def open_spider(self, spider):
            self.client = pymongo.MongoClient(self.mongo_uri)
            self.db = self.client[self.mongo_db]
    
        def close_spider(self, spider):
            self.client.close()
    
        def process_item(self, item, spider):
            #这里通过mongodb进行了一个去重的操作,每次更新插入数据之前都会进行查询,判断要插入的url_token是否已经存在,如果不存在再进行数据插入,否则放弃数据
            self.db['user'].update({'url_token':item["url_token"]},{'$set':item},True)
            return item
  • 相关阅读:
    activiti app 6.0 乱码
    扫盲--CRM系统和ERP系统的区别
    GraphQL实战-第四篇-构建开发框架
    GraphQL实战-第三篇-spring Boot 实现
    GraphQL实战-第二篇-java实现及分析
    GraphQL实战-第一篇-GraphQL介绍
    @PostConstruct及跳坑记录
    jmeter元件的介绍
    Docker之5. 容器的操作
    Docker之4. 镜像的操作
  • 原文地址:https://www.cnblogs.com/zhaof/p/7228131.html
Copyright © 2011-2022 走看看