zoukankan      html  css  js  c++  java
  • HDU 1817Necklace of Beads(置换+Polya计数)

    Necklace of Beads
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 40 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there? 

     

    Input

    The input has several lines, and each line contains the input data n. 
    -1 denotes the end of the input file. 

     

    Output

    The output should contain the output data: Number of different forms, in each line correspondent to the input data.
     

    Sample Input

    4 5 -1
     

    Sample Output

    21 39

    题目大意:

    n个珠子串成一个圆,用三种颜色去涂色。问一共有多少种不同的涂色方法。

    不同的涂色方法被定义为:如果这种涂色情况翻转,旋转不与其他情况相同就为不同。

     

    解题思路:

    Polya定理模版题。

    对于顺时针长度为i的旋转,为pow(3, gcd(n,i);

    对于翻转,当为奇数时,有:n*pow(3, n/2+1); 

       当为偶数时,有:n/2*pow(3.0,n/2)+n/2*pow(3.0,n/2+1);

    一共有2*n种情况,最后要除以2*n

     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <cmath>
     6 using namespace std;
     7 typedef long long LL;
     8 int n;
     9 LL Pow(LL a, LL b) // 手写long long
    10 {
    11     LL res = 1;
    12     for (int i = 0; i < b; i++)
    13         res *= a;
    14     return res;
    15 }
    16 int gcd(int a, int b)
    17 {
    18     if (a == 0)
    19         return b;
    20     return gcd(b % a, a);
    21 }
    22 int main()
    23 {
    24     while (scanf("%d", &n) != EOF && n != -1)
    25     {
    26         if (n == 0)
    27         {
    28             printf("0
    ");
    29             continue;
    30         }
    31         LL ans = 0;
    32         for (int i = 1; i <= n; i++)
    33             ans += Pow(3, gcd(i, n));
    34 
    35         if (n & 1)
    36         {
    37             ans += n * Pow(3, (n + 1) / 2);
    38         }
    39         else
    40         {
    41             ans += n / 2 * Pow(3.0, n / 2 + 1);
    42             ans += n / 2 * Pow(3.0, n / 2);
    43             //ans += n / 2 * (pow(3.0, n / 2 + 1) + pow(3.0, n / 2));
    44         }
    45         printf("%I64d
    ", ans / 2 / n);
    46     }
    47     return 0;
    48 }
    View Code
     
  • 相关阅读:
    Java 并发理论简述
    Java 并发之原子性与可见性
    JVM 简述
    【算法导论】第5章,概率分析和随机算法
    【算法导论】第3、4章,增长和递归式
    【python】matplotlib进阶
    【dlbook】实践方法论
    【dlbook】优化
    【dlbook】正则化
    【dlbook】深度网络
  • 原文地址:https://www.cnblogs.com/zhaopAC/p/5503336.html
Copyright © 2011-2022 走看看