zoukankan      html  css  js  c++  java
  • HDU 1817Necklace of Beads(置换+Polya计数)

    Necklace of Beads
    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

    Description

    Beads of red, blue or green colors are connected together into a circular necklace of n beads ( n < 40 ). If the repetitions that are produced by rotation around the center of the circular necklace or reflection to the axis of symmetry are all neglected, how many different forms of the necklace are there? 

     

    Input

    The input has several lines, and each line contains the input data n. 
    -1 denotes the end of the input file. 

     

    Output

    The output should contain the output data: Number of different forms, in each line correspondent to the input data.
     

    Sample Input

    4 5 -1
     

    Sample Output

    21 39

    题目大意:

    n个珠子串成一个圆,用三种颜色去涂色。问一共有多少种不同的涂色方法。

    不同的涂色方法被定义为:如果这种涂色情况翻转,旋转不与其他情况相同就为不同。

     

    解题思路:

    Polya定理模版题。

    对于顺时针长度为i的旋转,为pow(3, gcd(n,i);

    对于翻转,当为奇数时,有:n*pow(3, n/2+1); 

       当为偶数时,有:n/2*pow(3.0,n/2)+n/2*pow(3.0,n/2+1);

    一共有2*n种情况,最后要除以2*n

     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstring>
     4 #include <cstdio>
     5 #include <cmath>
     6 using namespace std;
     7 typedef long long LL;
     8 int n;
     9 LL Pow(LL a, LL b) // 手写long long
    10 {
    11     LL res = 1;
    12     for (int i = 0; i < b; i++)
    13         res *= a;
    14     return res;
    15 }
    16 int gcd(int a, int b)
    17 {
    18     if (a == 0)
    19         return b;
    20     return gcd(b % a, a);
    21 }
    22 int main()
    23 {
    24     while (scanf("%d", &n) != EOF && n != -1)
    25     {
    26         if (n == 0)
    27         {
    28             printf("0
    ");
    29             continue;
    30         }
    31         LL ans = 0;
    32         for (int i = 1; i <= n; i++)
    33             ans += Pow(3, gcd(i, n));
    34 
    35         if (n & 1)
    36         {
    37             ans += n * Pow(3, (n + 1) / 2);
    38         }
    39         else
    40         {
    41             ans += n / 2 * Pow(3.0, n / 2 + 1);
    42             ans += n / 2 * Pow(3.0, n / 2);
    43             //ans += n / 2 * (pow(3.0, n / 2 + 1) + pow(3.0, n / 2));
    44         }
    45         printf("%I64d
    ", ans / 2 / n);
    46     }
    47     return 0;
    48 }
    View Code
     
  • 相关阅读:
    本地项目上传到github
    linux 常用命令
    mysql 查询日志基本操作
    js 短信60秒倒计时
    windows下 mysql 移库
    INSERT INTO table(xxx) VALUES (xxx)
    springboot 项目接口调用失败
    P1093 奖学金
    P1403约数研究
    P1147连续自然数和
  • 原文地址:https://www.cnblogs.com/zhaopAC/p/5503336.html
Copyright © 2011-2022 走看看